Prompt实战之构建语义搜索引擎 1)介绍
语义搜索(Semantic Search)正逐渐成为现代信息检索系统的核心能力,尤其在结合大语言模型(LLM)的应用中扮演着至关重要的角色。本教程将通过构建一个基于 LangChain 的语义搜索引擎,带你逐步掌握实现检索增强生成(Retrieval-Augmented Generation, RAG)系统的关键技能。
1.1 为什么需要语义搜索?
传统搜索引擎依赖关键词匹配,而语义搜索通过向量嵌入(embeddings)技术,能够理解查询的实际语义,从而返回语义上最相关的文本段落。这使得搜索系统能更精准地为用户提供上下文丰富、意义相关的内容。
在大语言模型的时代,这项技术变得尤为重要。语义搜索为模型提供了“记忆”或“知识检索”的能力,广泛用于以下场景:
- 对话机器人回答基于文档的问题;
- 企业内部搜索系统;
- 法律、医学等专业领域的知识提取;
- 文档问答(Document QA)和检索增强生成(RAG)系统。
💡 小贴士:
RAG 是结合了检索与生成的技术路线,先通过语义搜索获取相关文本,再将其作为上下文输入到语言模型中,用于回答问题或生成内容。
1.2 LangChain 简介
LangChain 是一个专为构建大语言模型应用设计的框架。它提供了一套清晰的抽象层和模块化组件,支持:
- 文档加载与预处理;
- 文本分块;
- 向量化与存储;
- 数据检索;
- 与语言模型的无缝集成。
LangChain 支持多种主流向量数据库(如 FAISS、Pinecone、Weaviate)、多种嵌入模型(如 OpenAI、HuggingFace)以及流行的文档格式(如 PDF、Markdown、Notion 等)。
本教程将以构建“基于 PDF 的语义搜索引擎”为目标,贯穿 LangChain 的关键能力。
1.3 教程目标与大纲
我们将构建一个可以从 PDF 文档中检索相关内容的语义搜索系统,涵盖以下关键步骤:
单元 | 内容 |
---|---|
第2章 | 文档与加载器:如何加载 PDF 并形成文档对象 |
第3章 | 文本切分:将文档拆分成适合检索的小段落 |
第4章 | 嵌入生成:将文本转化为向量表示 |
第5章 | 构建向量数据库与检索器 |
第6章 | 问答系统构建与响应生成 |
📌 术语解释
- 文档加载器(Document Loader):LangChain 中用于从特定数据源加载原始文档的组件(如 PDF、Notion、网页等)。
- 文本切分器(Text Splitter):将大段文本拆分为更小、更易于处理的文本块,通常用于嵌入与检索。
- 嵌入(Embedding):把文本转换为数字向量,使得相似文本在向量空间中更接近。
- 向量数据库(Vector Store):一个可以存储向量并高效支持相似度检索的系统。
1.4 谁适合学习本教程?
本教程适合以下人群:
- 对 RAG 系统感兴趣的开发者;
- 想构建基于私有数据的问答或检索系统的工程师;
- 希望将 LangChain 应用于实际项目的技术人员;
- 探索语义检索、嵌入技术与向量数据库结合的 AI 应用构建者。
你无需深入掌握深度学习或大模型训练的知识,只要具备基本的 Python 编程能力,即可跟随本教程完成项目构建。
1.5 环境与依赖
我们将使用 Jupyter Notebook 编写和运行代码,并使用以下核心工具:
langchain-community
:LangChain 的社区模块;pypdf
:用于 PDF 文档读取;langchain-openai
:集成 OpenAI 的嵌入模型;langsmith
(可选):用于调试与可视化追踪链式调用。