Prompt实战之构建语义搜索引擎 1)介绍

Prompt实战之构建语义搜索引擎 1)介绍

语义搜索(Semantic Search)正逐渐成为现代信息检索系统的核心能力,尤其在结合大语言模型(LLM)的应用中扮演着至关重要的角色。本教程将通过构建一个基于 LangChain 的语义搜索引擎,带你逐步掌握实现检索增强生成(Retrieval-Augmented Generation, RAG)系统的关键技能。

1.1 为什么需要语义搜索?

传统搜索引擎依赖关键词匹配,而语义搜索通过向量嵌入(embeddings)技术,能够理解查询的实际语义,从而返回语义上最相关的文本段落。这使得搜索系统能更精准地为用户提供上下文丰富、意义相关的内容。

在大语言模型的时代,这项技术变得尤为重要。语义搜索为模型提供了“记忆”或“知识检索”的能力,广泛用于以下场景:

  • 对话机器人回答基于文档的问题;
  • 企业内部搜索系统;
  • 法律、医学等专业领域的知识提取;
  • 文档问答(Document QA)和检索增强生成(RAG)系统。

💡 小贴士:
RAG 是结合了检索与生成的技术路线,先通过语义搜索获取相关文本,再将其作为上下文输入到语言模型中,用于回答问题或生成内容。


1.2 LangChain 简介

LangChain 是一个专为构建大语言模型应用设计的框架。它提供了一套清晰的抽象层和模块化组件,支持:

  • 文档加载与预处理;
  • 文本分块;
  • 向量化与存储;
  • 数据检索;
  • 与语言模型的无缝集成。

LangChain 支持多种主流向量数据库(如 FAISS、Pinecone、Weaviate)、多种嵌入模型(如 OpenAI、HuggingFace)以及流行的文档格式(如 PDF、Markdown、Notion 等)。

本教程将以构建“基于 PDF 的语义搜索引擎”为目标,贯穿 LangChain 的关键能力。


1.3 教程目标与大纲

我们将构建一个可以从 PDF 文档中检索相关内容的语义搜索系统,涵盖以下关键步骤:

单元内容
第2章文档与加载器:如何加载 PDF 并形成文档对象
第3章文本切分:将文档拆分成适合检索的小段落
第4章嵌入生成:将文本转化为向量表示
第5章构建向量数据库与检索器
第6章问答系统构建与响应生成

📌 术语解释

  • 文档加载器(Document Loader):LangChain 中用于从特定数据源加载原始文档的组件(如 PDF、Notion、网页等)。
  • 文本切分器(Text Splitter):将大段文本拆分为更小、更易于处理的文本块,通常用于嵌入与检索。
  • 嵌入(Embedding):把文本转换为数字向量,使得相似文本在向量空间中更接近。
  • 向量数据库(Vector Store):一个可以存储向量并高效支持相似度检索的系统。

1.4 谁适合学习本教程?

本教程适合以下人群:

  • 对 RAG 系统感兴趣的开发者;
  • 想构建基于私有数据的问答或检索系统的工程师;
  • 希望将 LangChain 应用于实际项目的技术人员;
  • 探索语义检索、嵌入技术与向量数据库结合的 AI 应用构建者。

你无需深入掌握深度学习或大模型训练的知识,只要具备基本的 Python 编程能力,即可跟随本教程完成项目构建。


1.5 环境与依赖

我们将使用 Jupyter Notebook 编写和运行代码,并使用以下核心工具:

  • langchain-community:LangChain 的社区模块;
  • pypdf:用于 PDF 文档读取;
  • langchain-openai:集成 OpenAI 的嵌入模型;
  • langsmith(可选):用于调试与可视化追踪链式调用。
### RAG 检索增强生成与向量数据库结合的实战案例 #### 使用场景概述 在现代自然语言处理技术中,RAG(检索增强生成)通过结合信息检索和生成模型来提高语言模型的知识覆盖范围和回答准确性[^1]。特别是在构建特定领域内的问答系统时,这种方法尤为有用。 #### 实战案例分析 一个典型的实际应用是在医疗健康咨询平台上的部署。该平台旨在提供专业的医学建议给用户。为了实现这一点,开发者们采用了基于ChatGPT + Vector Database + Prompt的技术栈(CVP),这不仅提高了回复的质量,还增强了系统的可靠性和时效性[^2]。 在这个例子中: - **数据准备阶段**:收集并整理了大量的医学文献、临床指南以及常见疾病的相关资料作为训练素材; - **向量化过程**:这些文本被转化为高维空间中的稠密向量表示形式,并存入专门设计用于快速查找相似项的向量数据库内; - **查询优化环节**:当接收到用户的提问后,系统会先将其转换成对应的语义向量表达方式,再以此为基础,在预先建立好的知识库里寻找最接近的答案片段; - **响应合成部分**:最后一步则是由强大的预训练模型根据找到的信息片段自动生成连贯且准确的回答内容返回给使用者。 ```python from langchain import LangChain, DocumentStore, Retriever, Generator # 初始化组件实例化对象 document_store = DocumentStore() retriever = Retriever(document_store=document_store) generator = Generator() def rag_pipeline(user_query): # 将用户输入转为向量形式 query_vector = retriever.encode_text(user_query) # 在向量数据库中搜索相关文档 retrieved_docs = document_store.search(query_vector) # 利用检索到的结果辅助生成最终答复 response = generator.generate(retrieved_docs, user_query=user_query) return response ``` 此代码展示了如何创建一个简单的管道函数`rag_pipeline()`,它接收来自用户的询问字符串参数,并依次调用了编码器(`encode_text`)搜索引擎(`search`)和服务端API接口(`generate`)三个主要功能模块完成整个流程的操作[^4]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

这是Jamon

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值