大数据数仓建模(4)

本文详细介绍了大数据数仓的构建过程,包括Hadoop的安装与优化,如HDFS存储多目录、LZO压缩配置,以及Zookeeper、Flume和Kafka的安装与使用。通过基准测试评估集群性能,并提供了集群启动和停止的脚本。此外,还讨论了参数调优和数据采集Flume的配置,包括自定义拦截器的实现,以及Kafka的压测和机器数量计算。
摘要由CSDN通过智能技术生成

                                        第4章 数据采集模块

4.1 Hadoop安装

详见:大数据技术之Hadoop(入门)

1)测试集群规划:

 

服务器bigdata02

服务器bigdata03

服务器bigdata04

HDFS

NameNode

DataNode

DataNode

DataNode

SecondaryNameNode

Yarn

NodeManager

Resourcemanager

NodeManager

NodeManager

注意:尽量使用离线方式安装,CDH要收费了,使用的人会越来越少...

4.1.1 项目经验HDFS存储目录

若HDFS存储空间紧张,需要对DataNode进行磁盘扩展。

1)在DataNode节点增加磁盘并进行挂载。

2)在hdfs-site.xml文件中配置多目录,注意新挂载磁盘的访问权限问题。

<property>

    <name>dfs.datanode.data.dir</name>

<value>file:///${hadoop.tmp.dir}/dfs/data1,file:///hd2/dfs/data2,file:///hd3/dfs/data3,file:///hd4/dfs/data4</value>

</property>

3)增加磁盘后,保证每个目录数据均衡

开启数据均衡命令:

bin/start-balancer.sh –threshold 10

对于参数10,代表的是集群中各个节点的磁盘空间利用率相差不超过10%,可根据实际情况进行调整。

停止数据均衡命令:

bin/stop-balancer.sh

4.1.2 项目经验之支持LZO压缩配置

1)hadoop本身并不支持lzo压缩,故需要使用twitter提供的hadoop-lzo开源组件。hadoop-lzo需依赖hadoop和lzo进行编译,编译步骤如下。

Hadoop支持LZO

0. 环境准备
maven(下载安装,配置环境变量,修改sitting.xml加阿里云镜像)
gcc-c++
zlib-devel
autoconf
automake
libtool
通过yum安装即可,yum -y install gcc-c++ lzo-devel zlib-devel autoconf automake libtool

1. 下载、安装并编译LZO

wget http://www.oberhumer.com/opensource/lzo/download/lzo-2.10.tar.gz

tar -zxvf lzo-2.10.tar.gz

cd lzo-2.10

./configure -prefix=/usr/local/hadoop/lzo/

make

make install

2. 编译hadoop-lzo源码

2.1 下载hadoop-lzo的源码,下载地址:https://github.com/twitter/hadoop-lzo/archive/master.zip
2.2 解压之后,修改pom.xml
    <hadoop.current.version>2.7.2</hadoop.current.version>
2.3 声明两个临时环境变量
     export C_INCLUDE_PATH=/usr/local/hadoop/lzo/include
     export LIBRARY_PATH=/usr/local/hadoop/lzo/lib 
2.4 编译
    进入hadoop-lzo-master,执行maven编译命令
    mvn package -Dmaven.test.skip=true
2.5 进入target,hadoop-lzo-0.4.21-SNAPSHOT.jar 即编译成功的hadoop-lzo组件

2)将编译好后的hadoop-lzo-0.4.20.jar 放入hadoop-2.7.2/share/hadoop/common/

[hadoop@bigdata02 common]$ pwd
/opt/module/hadoop-2.7.2/share/hadoop/common
[hadoop@bigdata02 common]$ ls
hadoop-lzo-0.4.20.jar

3)同步hadoop-lzo-0.4.20.jar到bigdata03、bigdata04

[hadoop@bigdata02 common]$ xsync hadoop-lzo-0.4.20.jar

4)core-site.xml增加配置支持LZO压缩

<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>

<configuration>
<property>
<name>io.compression.codecs</name>
<value>
org.apache.hadoop.io.compress.GzipCodec,
org.apache.hadoop.io.compress.DefaultCodec,
org.apache.hadoop.io.compress.BZip2Codec,
org.apache.hadoop.io.compress.SnappyCodec,
com.hadoop.compression.lzo.LzoCodec,
com.hadoop.compression.lzo.LzopCodec
</value>
</property>

<property>
    <name>io.compression.codec.lzo.class</name>
    <value>com.hadoop.compression.lzo.LzoCodec</value>
</property>
</configuration>

5)同步core-site.xml到bigdata03、bigdata04

[hadoop@bigdata02 hadoop]$ xsync core-site.xml

6)启动及查看集群

[hadoop@bigdata02 hadoop-2.7.2]$ sbin/start-dfs.sh

[hadoop@bigdata03 hadoop-2.7.2]$ sbin/start-yarn.sh

4.1.3 项目经验之LZO创建索引

1)创建LZO文件的索引,LZO压缩文件的可切片特性依赖于其索引,故我们需要手动为LZO压缩文件创建索引。若无索引,则LZO文件的切片只有一个。

hadoop jar /path/to/your/hadoop-lzo.jar com.hadoop.compression.lzo.DistributedLzoIndexer bigtable.lzo

2)测试

(1)将bigtable.lzo(150M)上传到集群的根目录

[hadoop@bigdata02 module]$ hadoop fs -mkdir /input

[hadoop@bigdata02 module]$ hadoop fs -put bigtable.lzo /input

(2)执行wordcount程序

[hadoop@bigdata02 module]$ hadoop jar /opt/module/hadoop-2.7.2/share/hadoop/mapreduce/hadoop-mapreduce-examples-2.7.2.jar wordcount /input /output1

   

 

注意:这个lzo文件有214m,默认的块大小是128m,那么应该是有两个块,我们通过运行mapreduce程序发现,只有一个切分,需要进行下面的步骤才行。

   (3)对上传的LZO文件建索引

[hadoop@bigdata02 module]$ hadoop jar /opt/module/hadoop-2.7.2/share/hadoop/common/hadoop-lzo-0.4.20.jar  com.hadoop.compression.lzo.DistributedLzoIndexer /input/bigtable.lzo

(4)再次执行WordCount程序

[hadoop@bigdata02 module]$ hadoop jar /opt/module/hadoop-2.7.2/share/hadoop/mapreduce/hadoop-mapreduce-examples-2.7.2.jar wordcount /input /output2

 

4.1.4 项目经验基准测试

面试官可能会问,我有10T的数据,读完需要多长时间,写需要多长时间?你应该回答,我们会先做基准测试,测试出这个集群的读写能力,计算的能力...

1) 测试HDFS写性能

测试内容:向HDFS集群写10个128M的文件

[hadoop@bigdata02 mapreduce]$ hadoop jar /opt/module/hadoop-2.7.2/share/hadoop/mapreduce/hadoop-mapreduce-client-jobclient-2.7.2-tests.jar TestDFSIO -write -nrFiles 10 -fileSize 128MB



19/05/02 11:45:23 INFO fs.TestDFSIO: ----- TestDFSIO ----- : write

19/05/02 11:45:23 INFO fs.TestDFSIO:            Date & time: Thu May 02 11:45:23 CST 2019

19/05/02 11:45:23 INFO fs.TestDFSIO:        Number of files: 10

19/05/02 11:45:23 INFO fs.TestDFSIO: Total MBytes processed: 1280.0

19/05/02 11:45:23 INFO fs.TestDFSIO:      Throughput mb/sec: 10.69751115716984

19/05/02 11:45:23 INFO fs.TestDFSIO: Average IO rate mb/sec: 14.91699504852295

19/05/02 11:45:23 INFO fs.TestDFSIO:  IO rate std deviation: 11.160882132355928

19/05/02 11:45:23 INFO fs.TestDFSIO:     Test exec time sec: 52.315

最重要的参数是 Throughput mb/sec: 10.69751115716984 表示平均吞吐量为10.6975m/s

2)测试HDFS读性能

测试内容:读取HDFS集群10个128M的文件

[hadoop@bigdata02 mapreduce]$ hadoop jar /opt/module/hadoop-2.7.2/share/hadoop/mapreduce/hadoop-mapreduce-client-jobclient-2.7.2-tests.jar TestDFSIO -read -nrFiles 10 -fileSize 128MB



19/05/02 11:56:36 INFO fs.TestDFSIO: ----- TestDFSIO ----- : read

19/05/02 11:56:36 INFO fs.TestDFSIO:            Date & time: Thu May 02 11:56:36 CST 2019

19/05/02 11:56:36 INFO fs.TestDFSIO:        Number of files: 10

19/05/02 11:56:36 INFO fs.TestDFSIO: Total MBytes processed: 1280.0

19/05/02 11:56:36 INFO fs.TestDFSIO:      Throughput mb/sec: 16.001000062503905

19/05/02 11:56:36 INFO fs.TestDFSIO: Average IO rate mb/sec: 17.202795028686523

19/05/02 11:56:36 INFO fs.TestDFSIO:  IO rate std deviation: 4.881590515873911

19/05/02 11:56:36 INFO fs.TestDFSIO:     Test exec time sec: 49.116

19/05/02 11:56:36 INFO fs.TestDFSIO:

3)删除测试生成数据

[hadoop@bigdata02 mapreduce]$ hadoop jar /opt/module/hadoop-2.7.2/share/hadoop/mapreduce/hadoop-mapreduce-client-jobclient-2.7.2-tests.jar TestDFSIO -clean

4)使用Sort程序评测MapReduce

(1)使用RandomWriter来产生随机数,每个节点运行10个Map任务,每个Map产生大约1G大小的二进制随机数

[hadoop@bigdata02 mapreduce]$ hadoop jar /opt/module/hadoop-2.7.2/share/hadoop/mapreduce/hadoop-mapreduce-examples-2.7.2.jar randomwriter random-data

(2)执行Sort程序

[hadoop@bigdata02 mapreduce]$ hadoop jar /opt/module/hadoop-2.7.2/share/hadoop/mapreduce/hadoop-mapreduce-examples-2.7.2.jar sort random-data sorted-data

(3)验证数据是否真正排好序了

[hadoop@bigdata02 mapreduce]$

hadoop jar /opt/module/hadoop-2.7.2/share/hadoop/mapreduce/hadoop-mapreduce-client-jobclient-2.7.2-tests.jar testmapredsort -sortInput random-data -sortOutput sorted-data

4.1.5 项目经验之Hadoop参数调优

1)HDFS参数调优hdfs-site.xml

dfs.namenode.handler.count=20 * log2(Cluster Size),比如集群规模为8台时,此参数设置为60 

作用:dataNode与namenode之间通信需要有一定的并发度,如果太低,datanode需要排队,如果太高,集群也没有这么多资源,需要有一个比较合理的并发度...

The number of Namenode RPC server threads that listen to requests from clients. If dfs.namenode.servicerpc-address is not configured then Namenode RPC server threads listen to requests from all nodes.

NameNode有一个工作线程池,用来处理不同DataNode的并发心跳以及客户端并发的元数据操作。对于大集群或者有大量客户端的集群来说,通常需要增大参数dfs.namenode.handler.count的默认值10。设置该值的一般原则是将其设置为集群大小的自然对数乘以20,即
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值