Pytorch如何切换 cpu 和 gpu 的使用

前言,在pytorch中,当服务器上的gpu被占用时,很多时候我们想先用cpu调试下代码,那么就需要进行gpu和cpu的切换。

方法1:x.to(device)

把 device 作为一个可变参数,推荐使用argparse进行加载:

  1. 使用gpu时:
device='cuda'
x.to(device)  # x是一个tensor,传到cuda上去
  1. 使用cpu时:
device='cpu'
x.to(device) 

方法2:使用x.cuda()+CUDA_VISIBLE_DEVICES

很多贴子中说,使用x.cuda()x.to('cuda') 虽然是等效的,但是x.cuda() 的缺点是无法动态切换cpu。然而,其实配合命令行参数CUDA_VISIBLE_DEVICES 是可以进行切换的。

在服务器上创建一个python脚本 t.py

import torch
print(torch.cuda.device_count())  # 可用gpu数量
print(torch.cuda.is_available())  # 是否可用gpu

首先先看一下,正常运行的情况:

  • 执行命令:python t.py
  • 输出结果:因为服务器上有两个gpu,所以是我们想要的结果。
2
True

如果想要只使用某一块gpu,只需要在执行前加一个参数:

  • CUDA_VISIBLE_DEVICES=0 python t.py,例如,我们要使用gpu 0
  • 接下来看看输出什么:是的!程序中确实只可见了一块gpu~
1
True

下面,如果我们想使用cpu呢?

  • CUDA_VISIBLE_DEVICES="" python t.py
  • 输出结果:可以看到,虽然服务器上有2块cpu,通过我们设置执行参数,程序中也成功看不到了!
0
False

因此,回归正题,当我们使用x.cuda()进行分配gpu时,只需要使用torch.cuda.is_available()加一个判断即可,当想使用cpu的时候在执行程序的命令行参数进行控制:

if torch.cuda.is_available():
    x= x.cuda()
### PyTorch CPUGPU安装差异 对于希望利用PyTorch构建训练深度神经网络的研究人员开发者来说,理解如何针对不同硬件环境(即CPUGPU)正确配置工作环境至关重要。当考虑在CPU上部署PyTorch,主要关注的是简化设置流程以便快速启动项目开发;而对于GPU支持,则更侧重于最大化计算性能以加速模型训练过程。 #### 安装基础包 无论是CPU还是GPU版本PyTorch安装,都依赖于Python环境的存在,并且推荐通过`conda`或者`pip`工具来完成软件包管理。然而,在具体操作层面存在细微差别: - **CPU-only 版本**: 如果仅需使用中央处理器(CPU),那么可以选择较为简单的二进制分发文件来进行安装。这通常意味着不需要额外安装CUDA或其他图形处理单元(GPU)驱动程序支持库[^2]。 ```bash pip install torch torchvision torchaudio ``` 上述命令默认会选择适合当前系统的稳定版PyTorch及其配套组件,适用于大多数只涉及CPU运算的任务场景。 #### 配置GPU支持 为了充分利用NVIDIA GPU的强大并行计算能力,必须确保计算机已正确安装了兼容版本CUDA Toolkit以及相应的cuDNN库。之后可以根据官方指南选择合适的预编译轮子(wheel)进行安装,从而获得最佳性能表现: - **GPU 加速版本**: 对于想要启用GPU加速功能的情况,除了基本的PyTorch外还需要特别指明要使用CUDA版本号。例如,如果机器配备有支持CUDA 11.3及以上版本的显卡,则可以执行如下指令获取带有相应GPU优化特性的PyTorch发行版: ```bash pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu113 ``` 值得注意的是,这里的URL参数会指向包含特定于所选CUDA版本PyTorch扩展模块的位置。因此,根据实际需求调整此链接中的CUDA编号非常重要。 此外,还有一种更为简便的方法是借助Docker容器化技术一键搭建完整的PyTorch开发环境,其中包括预先配置好所有必要的依赖项,甚至可以直接拉取已经集成Kaldi语音识别引擎等高级特性在内的定制镜像[^4]。 综上所述,虽然两者的基础安装步骤相似,但在涉及到是否开启GPU加速选项则表现出明显的区别——前者更加注重便捷性易用性,而后者强调高性能计算效率。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值