PyTorch终极安装指南:CPU/GPU双版本+环境配置全攻略

一、硬件准备与版本选择

在进行安装前我们先来确定自己的电脑是否要安装带有GPU版本的PyTorch,接下来我们来用以下两种方法查看自己的电脑到底有没有GPU。

1.1 显卡型号确认

Windows系统:

  • 右键开始菜单 → 设备管理器 → 显示适配器 / 或者直接点击win+X快捷键,显示界面如下
    在这里插入图片描述
    这里点击任务管理器,进入任务管理界面
    在这里插入图片描述
    点击第二个图标,进入性能界面,点击GPU 0,查看是否有NVIDIA的英伟达显卡的字样,可以看到我这台电脑是没有GPU的。
    在这里插入图片描述
    下面我用另一台电脑截了一张带有GPU界面的图,可以看到这台带有NVIDIA的英伟达显卡的字样,所以这台是有GPU的电脑,可以安装GPU版本的PyTorch。
    在这里插入图片描述

  • 第二种查看方法是 Win+R → 输入dxdiag → 显示选项卡,弹出的界面后,不带GPU的显示如下
    在这里插入图片描述
    带GPU的电脑界面显示如下:
    在这里插入图片描述

Linux系统:

nvidia-smi
lspci | grep -i nvidia

通过以上步骤判断好了自己电脑是否有GPU,就可以通过后面的步骤安装适合自己电脑的版本,我GPU和CPU版本的安装都做了,所以大家注意甄别,不带说明的,是都要进行的操作。
当然有GPU的用户也可以安装没有GPU版本的PyTorch。

1.2 CUDA版本匹配原则(GPU用户对照查看,后面要用到)

NVIDIA驱动版本支持的最高CUDA版本PyTorch推荐版本
450.80.02CUDA 11.01.7.0+cu110
470.82.01CUDA 11.41.10.0+cu113
515.65.01CUDA 11.72.0.0+cu117
535.86.05CUDA 12.22.1.0+cu121

通过nvidia-smi查看驱动版本,驱动版本必须≥PyTorch要求的CUDA版本

二、Anaconda环境搭建

2.1 安装与配置

  1. 官网下载对应系统版本

进入官网后点击 Skip registration
进入下载界面,选择适合自己系统的版本
在这里插入图片描述

等待下载完成之后,打开文件夹双击进行安装
在这里插入图片描述

  1. 安装Anaconda

打开之后一路Next,I Agree,Next
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

直到碰到选择安装路径,这里我选择的D盘,最简单的方法是将C改为D,系统会自动创建文件夹,或者你也可以去新建一个文件夹。选择好路径之后,点击Next
在这里插入图片描述

接下来注意听,重点来了,如果你之前安装的应用系统自动配置的环境变量有问题,则这一步只需要勾选1,3,4,不要勾选2,有些系统配置的环境变量用不了,等下我们自己配置,在勾选3的时候会弹出一个警告,确定即可,勾选好之后点击 Install 即可。
这个界面的意思是:
1:创建快捷方式(仅支持的软件包)。
2:将 Anaconda3 添加到我的 PATH 环境变量
不推荐。这可能会导致与其他应用程序冲突。相反,请使用添加到 Windows 开始菜单中的命令提示符和 Powershell 菜单。
3:将 Anaconda3 注册为我的默认 Python 3.12
推荐。允许其他程序(如 VSCode、PyCharm 等)自动检测 Anaconda3 作为系统上的主要 Python 3.12。
4:完成后清除软件包缓存
推荐。在不影响功能的情况下恢复一些磁盘空间。
在这里插入图片描述
在这里插入图片描述

等待安装,可能有点慢得等几分钟
在这里插入图片描述

安装完成之后点击Next,在点击Next
在这里插入图片描述
在这里插入图片描述

接下来又一个重点来了,去掉这两个勾选,不要勾选,然后点击Finish
这个界面的意思是:
感谢您安装 Anaconda 发行版。
这里有一些有用的资源帮助您入门。我们建议您将“Anaconda 发行版入门”链接加入书签,以便日后参考。
1:启动 Anaconda 导航器
2: Anaconda 发行版入门

在这里插入图片描述
在这里插入图片描述

接下来我们来配置环境变量,打开环境变量,点击环境变量
在这里插入图片描述
在这里插入图片描述

在第二个系统环境里面找到Path,双击打开
在这里插入图片描述

点击新建
在这里插入图片描述

找到你 Anaconda 的安装路径,复制你的路径,新建进入系统环境变量
在这里插入图片描述
第二步找到 Scripts 这个文件夹,打开之后复制路径,新建进系统环境变量中
在这里插入图片描述

第三步找到 Library,双击打开找到 bin 这个文件夹,双击打开,复制它的路径,新建进环境系统变量
在这里插入图片描述

这是我建好的三条环境变量(建好之后一路确定退出)
D:\Anaconda
D:\Anaconda\Scripts
D:\Anaconda\Library\bin
在这里插入图片描述

到这里安装就结束了。

  1. 验证安装:

安装成功后你的开始界面会多出一个 Anaconda prompt,我们单击打开它
在这里插入图片描述

在出现的界面出入下面这条指令,如果出现版本号,即表示安装成功

conda --version  # 显示版本即成功

在这里插入图片描述

2.2 镜像源配置(加速下载)

# 清华源配置
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/
conda config --set show_channel_urls yes

这几条命令是用于配置 Anaconda 包管理器的镜像源,将镜像源设置为清华大学的镜像站,以加速在使用 conda 安装和更新软件包时的下载速度。最后一条命令设置在安装包时显示所使用的镜像源 URL,当然你也可以忽略这几条指令,不用管这一步骤,但是后面使用 conda 下载安装库的时候可能会比较慢,上面的指令直接在终端一一敲入即可,没有太多需要注意的地方,这里不做过多的解释,如果有不懂的,可以在评论区发出来,我看到会及时解答。

下面是我找的两条常用的镜像源:

镜像源配置命令
阿里云conda config --add channels https://mirrors.aliyun.com/anaconda/pkgs/main
中科大conda config --add channels https://mirrors.ustc.edu.cn/anaconda/pkgs/main

三、虚拟环境管理

3.1 创建专属环境

这一步用来创建自己的专属 conda 环境,后面安装 PyTorch 也是在这个环境下安装,指令后面的版本号根据自己安装的 python 版本选择,中间的 torch_gpu 的名称也可以自己更改,创建环境请在 Anaconda prompt 下面运行。

conda create -n pytorch python=3.12  # 创建Python3.9环境
conda activate pytorch             # 激活环境

想要查看自己的 python 版本号可以使用下面命令查看

python --version

在这里插入图片描述

第一条指令会询问是否安装需要的包,直接 y 即可
在这里插入图片描述

安装完成后,输入第二条指令切换环境,如果可以切换到你创建的环境则表示已经创建成功
在这里插入图片描述

3.2 多环境管理技巧

命令功能描述
conda env list查看所有环境
conda remove -n env_name --all删除指定环境
conda install package=version安装指定版本包

从下面开始就要安装 PyTorch 了,有 GPU 的请选择 GPU 版本的,安装 GPU 版本之前最好先从官网更新驱动。

英伟达驱动更新官网:https://www.nvidia.cn/geforce/drivers/

四、PyTorch安装全方案

4.1 CPU版本安装

接下来我们先来开始 CPU 版本的安装,进入PyTorch官网,选择相应的操作系统和 Python 版本,以及安装方式( pip 或者 conda),现在官网将 Python 版本统一合并为 Python 所以你们看到的界面应该是没有 Python 版本号的,直接选择 Python 即可,conda 安装如下:
在这里插入图片描述

在之前创建的环境下输出最后一行指令,等待安装完成即可

conda install pytorch torchvision torchaudio cpuonly -c pytorch

如果使用 pip 安装,大家这样选择即可,同样复制最后一条指令
在这里插入图片描述

在之前创建的环境下输入最后行指令,等待安装完成即可,由于官网提供的指令太慢,我这里给大家提供一条镜像版本的指令(注意镜像加速有时会报错,原因是镜像源未及时更新最新版本,你所下载的最新版镜像源没有,这时我们换回官网指令即可),指令如下:

# 无镜像源
pip3 install torch torchvision torchaudio

# 指定镜像源加速
pip install torch torchvision torchaudio -i https://pypi.tuna.tsinghua.edu.cn/simple

在这里插入图片描述

现在等待安装完成即可。

4.2 GPU版本安装

安装 GPU 版本先要确定电脑所支持的 cuda 版本,在命令行输入下面这行代码,就会显示电脑支持哪个版本的 cuda,注意这里只要我们选择比这个版本小的 cuda 电脑都可以支持,但不能选择比这个版本号大的 cuda 版本:

nvidia-smi

在这里插入图片描述

方案一:conda安装(推荐新手)

这里和 CPU 版本一样,进入PyTorch官网,选择相应的操作系统和 Python 版本,以及安装方式( pip 或者 conda),和电脑支持的 CUDA 版本就会显示安装指令,conda 安装如下:

conda install pytorch torchvision torchaudio pytorch-cuda=12.1 -c pytorch -c nvidia

在这里插入图片描述

方案二:pip精确安装

在之前创建的环境下输入最后行指令,等待安装完成即可,由于官网提供的指令太慢,我这里给大家提供一条镜像版本的指令(注意镜像加速有时会报错,原因是镜像源未及时更新最新版本,你所下载的最新版镜像源没有,这时我们换回官网指令即可),指令如下:

# 无镜像源
pip3 install torch torchvision torchaudio

# 指定镜像源加速
pip install torch==2.1.0+cu121 torchvision==0.16.0+cu121 torchaudio==2.1.0 \
--extra-index-url https://download.pytorch.org/whl/cu121

在这里插入图片描述
和 CPU 版本一样,复制最后一条指令,在之前创建的环境里面输入,等待安装完成即可。

这里我整理了几个 PyTorch 和 CUDA 对应关系表,大家可以对照自己的版本更改上面的指令

版本对应关系表:

PyTorch版本CUDA版本安装命令后缀
2.1.012.1+cu121
2.0.111.8+cu118
1.13.111.7+cu117

五、环境验证与测试

5.1 基础验证

这里我们切换到 Python 导入 import torch 如果没有出现报错,则 PyTorch 安装成功,可以使用 PyTorch 了。

import torch
print(torch.__version__)          # 查看PyTorch版本
print(torch.cuda.is_available())  # 查看GPU是否可用
print(torch.cuda.get_device_name(0))  # 显示显卡型号

在这里插入图片描述

5.2 性能测试

下面我提供一些测试代码,供大家过过手瘾,测试一下刚安装的 PyTorch 和 GPU 性能。

# 张量计算测试
x = torch.randn(10000, 10000).cuda()
y = torch.randn(10000, 10000).cuda()
z = x @ y
print(z.mean())  # 应输出tensor值无报错

六、开发环境配置

6.1 PyCharm关联conda环境

  1. 新建项目 → Python解释器 → 添加本地解释器
  2. 选择Conda环境 → 指定envs/环境名称/python.exe

如果不会手动配置,或配置出错,请参考:PyCharm 配置 Conda 环境

6.2 Jupyter Notebook配置

conda install ipykernel
python -m ipykernel install --user --name torch_gpu --display-name "PyTorch GPU"

七、常见问题解决方案

7.1 避坑指南

问题现象解决方案
CUDA out of memory减小batch_size,清理显存
No CUDA-capable device is detected检查驱动版本,重装CUDA工具包
ImportError: DLL load failed安装VC++可再发行组件

7.2 版本回退方法

# 查看可用版本
pip index versions torch

# 指定版本安装
pip install torch==1.12.1+cu113 --extra-index-url https://download.pytorch.org/whl/cu113

八、生产力工具推荐

工具名称用途描述安装命令
TensorBoard训练可视化pip install tensorboard
Jupyter Lab交互式开发环境conda install jupyterlab
NVIDIA-SMI监控GPU状态监测pip install gpustat

附:PyTorch版本生命周期表

版本发布日期维护状态CUDA支持
2.12023-10长期支持11.8, 12.1
2.02023-03维护中11.7, 11.8
1.132022-10停止维护11.6, 11.7

按照本指南操作,您将在15分钟内完成专业级的PyTorch开发环境搭建。如遇任何问题,欢迎在评论区留言讨论!

评论 47
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值