【LOJ# 3057】【HNOI2019】—校园旅行(二分图染色+DP)

本文探讨了一种针对回文串问题的优化DP算法。通过分析颜色相同连通块的特性,利用二分图和生成树的概念,提出了一种O(n)的边数优化策略,从而大幅度减少了暴力DP的时间复杂度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

传送门

首先 m 2 m^2 m2暴力 d p dp dp是显然的
正解毛爷爷的题解已经写得很明白了

考虑所有回文串一定是一段一段颜色相同的

考虑一个颜色相同的连通块

如果是二分图,那么保留一颗生成树不会影响答案
否则生成树上给每一个点加一个自环也不会影响答案
证明是很显然的

于是此时边数就是 O ( n ) O(n) O(n)

再暴力 d p dp dp就对了

#include<bits/stdc++.h>
using namespace std;
const int RLEN=1<<20|1;
inline char gc(){
    static char ibuf[RLEN],*ib,*ob;
    (ob==ib)&&(ob=(ib=ibuf)+fread(ibuf,1,RLEN,stdin));
    return (ob==ib)?EOF:*ib++;
}
#define gc getchar
inline int read(){
    char ch=gc();
    int res=0,f=1;
    while(!isdigit(ch))f^=ch=='-',ch=gc();
    while(isdigit(ch))res=(res+(res<<2)<<1)+(ch^48),ch=gc();
    return f?res:-res;
}
#define ll long long
#define re register
#define pii pair<int,int>
#define fi first
#define se second
#define pb push_back
#define cs const
#define bg begin
template<class tp>inline void chemx(tp &a,tp b){a<b?a=b:0;}
template<class tp>inline void chemn(tp &a,tp b){a>b?a=b:0;}
cs int N=5005;
vector<int> e[N],e1[N],e2[N];
int col[N],vis[N],a[N],n,m,q,fg;
pii E[N*100];
char s[N];
int stk[N],top;
short f[N][N];
void dfs(int x,int y){
	for(int &u:e[x]){
		for(int &v:e[y]){
			if(a[u]==a[v]&&!(f[u][v])){
				f[u][v]=f[v][u]=1,dfs(u,v);
			}
		}
	}
}
void dfs1(int u){
	vis[u]=1,stk[++top]=u;
	for(int &v:e1[u]){
		if(vis[v]){
			if(col[v]==col[u])
			fg=0;
			continue;
		}
		col[v]=col[u]^1,dfs1(v);
		e[u].pb(v),e[v].pb(u);
	}
}
void dfs2(int u){
	vis[u]=1;
	for(int &v:e2[u]){
		if(!vis[v])dfs2(v),e[u].pb(v),e[v].pb(u);
	}
}
int main(){
	n=read(),m=read(),q=read();
	scanf("%s",s+1);
	for(int i=1;i<=n;i++)a[i]=(s[i]=='1');
	for(int i=1;i<=m;i++){
		int u=read(),v=read();
		E[i].fi=u,E[i].se=v;
		if(a[u]==a[v])e1[u].pb(v),e1[v].pb(u);
		else e2[u].pb(v),e2[v].pb(u);
	}
	for(int i=1;i<=n;i++)if(!vis[i]){
		top=0,fg=1,col[i]=0,dfs1(i);
		if(!fg){
			for(int i=1;i<=top;i++)e[stk[i]].pb(stk[i]);
		}
	}
	memset(vis,0,sizeof(vis));
	for(int i=1;i<=n;i++)if(!vis[i]){
		dfs2(i);
	}
	for(int i=1;i<=m;i++){
		int u=E[i].fi,v=E[i].se;
		if(a[u]==a[v])
		f[u][v]=f[v][u]=1,dfs(u,v);
	}
	for(int i=1;i<=n;i++)f[i][i]=1,dfs(i,i);
	while(q--){
		int u=read(),v=read();
		if(f[u][v])puts("YES");
		else puts("NO");
	}
}
内容概要:本文详细探讨了智慧医疗建设的历程、现状、挑战及未来发展趋势。智慧医疗建设经历了信息化、数字化和数智化三个阶段,政策、需求和技术是其发展的三大推动力。文章指出,当前智慧医疗已从数据收集与治理阶段迈向数据价值应用阶段,特别是在高质量数据库建设、云计算、人工智能等技术的推动下,实现了临床科研、药物研发、真实世界研究及数字营销等多个场景的商业化落地。此外,文中还分析了医疗信息化系统同质化、数据孤岛、互联互通等痛点,并提出了云化转型、新产品、新技术和新服务作为突破方向。最后,通过奈特瑞、医渡科技、东软集团三个企业案例,展示了不同企业在智慧医疗领域的创新实践。 适合人群:医疗信息化从业者、医疗行业研究人员、医疗机构管理者、医疗科技企业相关人员、政策制定者及对智慧医疗感兴趣的投资者。 使用场景及目标:①了解智慧医疗建设的阶段性特征和发展趋势;②掌握医疗信息化建设中的关键技术和应用场景;③探讨解决医疗信息化系统同质化、数据孤岛等问题的策略;④学习企业如何通过新产品、新技术和新服务实现突破,推动智慧医疗发展。 其他说明:本文通过对智慧医疗建设的深入剖析,强调了政策导向、技术创新和市场需求的重要性,为企业和政策制定者提供了宝贵的参考。同时,文章也揭示了未来智慧医疗发展的广阔前景,特别是在数据资产化和数智化应用方面的巨大潜力。阅读时应注意结合政策背景和技术发展趋势,关注行业动态和企业创新实践。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值