首先
m
2
m^2
m2暴力
d
p
dp
dp是显然的
正解毛爷爷的题解已经写得很明白了
考虑所有回文串一定是一段一段颜色相同的
考虑一个颜色相同的连通块
如果是二分图,那么保留一颗生成树不会影响答案
否则生成树上给每一个点加一个自环也不会影响答案
证明是很显然的
于是此时边数就是 O ( n ) O(n) O(n)的
再暴力 d p dp dp就对了
#include<bits/stdc++.h>
using namespace std;
const int RLEN=1<<20|1;
inline char gc(){
static char ibuf[RLEN],*ib,*ob;
(ob==ib)&&(ob=(ib=ibuf)+fread(ibuf,1,RLEN,stdin));
return (ob==ib)?EOF:*ib++;
}
#define gc getchar
inline int read(){
char ch=gc();
int res=0,f=1;
while(!isdigit(ch))f^=ch=='-',ch=gc();
while(isdigit(ch))res=(res+(res<<2)<<1)+(ch^48),ch=gc();
return f?res:-res;
}
#define ll long long
#define re register
#define pii pair<int,int>
#define fi first
#define se second
#define pb push_back
#define cs const
#define bg begin
template<class tp>inline void chemx(tp &a,tp b){a<b?a=b:0;}
template<class tp>inline void chemn(tp &a,tp b){a>b?a=b:0;}
cs int N=5005;
vector<int> e[N],e1[N],e2[N];
int col[N],vis[N],a[N],n,m,q,fg;
pii E[N*100];
char s[N];
int stk[N],top;
short f[N][N];
void dfs(int x,int y){
for(int &u:e[x]){
for(int &v:e[y]){
if(a[u]==a[v]&&!(f[u][v])){
f[u][v]=f[v][u]=1,dfs(u,v);
}
}
}
}
void dfs1(int u){
vis[u]=1,stk[++top]=u;
for(int &v:e1[u]){
if(vis[v]){
if(col[v]==col[u])
fg=0;
continue;
}
col[v]=col[u]^1,dfs1(v);
e[u].pb(v),e[v].pb(u);
}
}
void dfs2(int u){
vis[u]=1;
for(int &v:e2[u]){
if(!vis[v])dfs2(v),e[u].pb(v),e[v].pb(u);
}
}
int main(){
n=read(),m=read(),q=read();
scanf("%s",s+1);
for(int i=1;i<=n;i++)a[i]=(s[i]=='1');
for(int i=1;i<=m;i++){
int u=read(),v=read();
E[i].fi=u,E[i].se=v;
if(a[u]==a[v])e1[u].pb(v),e1[v].pb(u);
else e2[u].pb(v),e2[v].pb(u);
}
for(int i=1;i<=n;i++)if(!vis[i]){
top=0,fg=1,col[i]=0,dfs1(i);
if(!fg){
for(int i=1;i<=top;i++)e[stk[i]].pb(stk[i]);
}
}
memset(vis,0,sizeof(vis));
for(int i=1;i<=n;i++)if(!vis[i]){
dfs2(i);
}
for(int i=1;i<=m;i++){
int u=E[i].fi,v=E[i].se;
if(a[u]==a[v])
f[u][v]=f[v][u]=1,dfs(u,v);
}
for(int i=1;i<=n;i++)f[i][i]=1,dfs(i,i);
while(q--){
int u=read(),v=read();
if(f[u][v])puts("YES");
else puts("NO");
}
}