以下用
C
,
D
C,D
C,D表示文内的
c
,
d
c,d
c,d
显然可以替换
l
c
m
lcm
lcm后枚举
g
c
d
gcd
gcd得到
b
i
i
D
≡
∑
d
∣
i
d
C
−
D
∑
d
∣
j
[
g
c
d
(
i
d
,
j
d
)
=
1
]
x
j
j
D
\frac{b_i}{i^D}\equiv\sum_{d|i}d^{C-D}\sum_{d|j}[gcd(\frac i d,\frac j d)=1]x_jj^D
iDbi≡d∣i∑dC−Dd∣j∑[gcd(di,dj)=1]xjjD
令
b
i
=
b
i
i
D
,
x
j
=
x
j
j
D
b_i=\frac{b_i}{i^D},x_j=x_jj^D
bi=iDbi,xj=xjjD
b
i
≡
∑
d
∣
i
d
C
−
D
∑
k
∣
i
d
μ
(
k
)
∑
d
k
∣
j
n
x
j
b_i\equiv \sum_{d|i}d^{C-D}\sum_{k|\frac i d}\mu(k)\sum_{dk|j}^nx_j
bi≡d∣i∑dC−Dk∣di∑μ(k)dk∣j∑nxj
设
f
(
i
)
=
∑
d
∣
i
d
C
−
D
μ
(
i
d
)
f(i)=\sum_{d|i}d^{C-D}\mu(\frac i d)
f(i)=∑d∣idC−Dμ(di)
b
i
≡
∑
d
∣
i
f
(
d
)
∑
d
∣
j
n
x
j
b_i\equiv \sum_{d|i}f(d)\sum_{d|j}^nx_j
bi≡d∣i∑f(d)d∣j∑nxj
设
g
(
d
)
=
∑
d
∣
j
n
x
j
g(d)=\sum_{d|j}^nx_j
g(d)=∑d∣jnxj
b
i
≡
∑
d
∣
i
f
(
d
)
g
(
d
)
b_i\equiv \sum_{d|i}f(d)g(d)
bi≡d∣i∑f(d)g(d)
f
(
i
)
g
(
i
)
=
b
i
−
∑
d
∣
i
,
d
≠
i
f
(
d
)
g
(
d
)
f(i)g(i)=b_i-\sum_{d|i,d\not=i}f(d)g(d)
f(i)g(i)=bi−d∣i,d=i∑f(d)g(d)
求出
g
g
g后考虑
g
(
i
)
=
∑
i
∣
j
n
x
j
g(i)=\sum_{i|j}^nx_j
g(i)=i∣j∑nxj
x
i
=
g
(
i
)
−
∑
i
∣
j
,
i
≠
j
x
j
x_i=g(i)-\sum_{i|j,i\not=j}x_j
xi=g(i)−i∣j,i=j∑xj
复杂度
O
(
n
l
o
g
n
)
O(nlogn)
O(nlogn)
#include<bits/stdc++.h>
using namespace std;
#define cs const
#define re register
#define pb push_back
#define pii pair<int,int>
#define ll long long
#define fi first
#define se second
#define bg begin
cs int RLEN=1<<20|1;
inline char gc(){
static char ibuf[RLEN],*ib,*ob;
(ib==ob)&&(ob=(ib=ibuf)+fread(ibuf,1,RLEN,stdin));
return (ib==ob)?EOF:*ib++;
}
inline int read(){
char ch=gc();
int res=0;bool f=1;
while(!isdigit(ch))f^=ch=='-',ch=gc();
while(isdigit(ch))res=(res+(res<<2)<<1)+(ch^48),ch=gc();
return f?res:-res;
}
inline ll readll(){
char ch=gc();
ll res=0;bool f=1;
while(!isdigit(ch))f^=ch=='-',ch=gc();
while(isdigit(ch))res=(res+(res<<2)<<1)+(ch^48),ch=gc();
return f?res:-res;
}
inline int readstring(char *s){
int top=0;char ch=gc();
while(isspace(ch))ch=gc();
while(!isspace(ch)&&ch!=EOF)s[++top]=ch,ch=gc();
return top;
}
template<typename tp>inline void chemx(tp &a,tp b){a<b?a=b:0;}
template<typename tp>inline void chemn(tp &a,tp b){a>b?a=b:0;}
cs int mod=998244353;
inline int add(int a,int b){return (a+=b)>=mod?(a-mod):a;}
inline int dec(int a,int b){a-=b;return a+(a>>31&mod);}
inline int mul(int a,int b){static ll r;r=1ll*a*b;return (r>=mod)?(r%mod):r;}
inline void Add(int &a,int b){(a+=b)>=mod?(a-=mod):0;}
inline void Dec(int &a,int b){a-=b,a+=a>>31&mod;}
inline void Mul(int &a,int b){static ll r;r=1ll*a*b;a=(r>=mod)?(r%mod):r;}
inline int ksm(int a,int b,int res=1){if(a==0&&b==0)return 0;for(;b;b>>=1,Mul(a,a))(b&1)&&(Mul(res,a),1);return res;}
inline int Inv(int x){return ksm(x,mod-2);}
inline int fix(int x){return (x<0)?x+mod:x;}
int n,q,c,d;
cs int N=100005;
int vis[N],pr[N],mu[N],tot,f[N],pc[N],pd[N];
inline void init_sieve(cs int n=N-5){
mu[1]=1;
for(int i=2;i<=n;i++){
if(!vis[i])pr[++tot]=i,mu[i]=mod-1;
for(int j=1;j<=tot&&i*pr[j]<=n;j++){
vis[i*pr[j]]=1;
if(i%pr[j]==0)break;
mu[i*pr[j]]=mod-mu[i];
}
}
for(int i=1;i<=n;i++)pc[i]=ksm(i,c),pd[i]=ksm(i,d);
for(int i=1;i<=n;i++){
int tp=mul(pc[i],Inv(pd[i]));
for(int j=1;i*j<=n;j++)
Add(f[i*j],mul(tp,mu[j]));
}
}
int b[N],g[N],x[N];
int main(){
#ifdef Stargazer
freopen("lx.in","r",stdin);
#endif
n=read(),c=read(),d=read(),q=read();
init_sieve();
while(q--){int fg=1;
for(int i=1;i<=n;i++)b[i]=mul(read(),Inv(pd[i]));
for(int i=1;i<=n;i++){
if(!f[i]&&b[i]){fg=0;break;}
g[i]=mul(Inv(f[i]),b[i]);
for(int j=2;i*j<=n;j++)
Dec(b[i*j],b[i]);
}
if(!fg){puts("-1");continue;}
for(int i=n;i;i--){
x[i]=g[i];
for(int j=i+i;j<=n;j+=i)
Dec(x[i],x[j]);
}
for(int i=1;i<=n;i++)cout<<mul(x[i],Inv(pd[i]))<<" ";puts("");
}return 0;
}