大意:给你一个字符串,求所有子串两两的最长公共前缀之和
考虑我们可以把串倒过来建 S a m Sam Sam,就变成了求所有子串的最长公共后缀之和
就是 P a r e n t − T r e e Parent-Tree Parent−Tree上两个 e n d p o s endpos endpos集合的距离
直接考虑每条边 e e e对答案的贡献
就是其 s i z [ e ] ∗ ( n − s i z [ e ] ) ∗ ( e n d p o s 集 合 大 小 ) ( s i z 是 子 树 大 小 ) siz[e]*(n-siz[e])*(endpos集合大小)(siz是子树大小) siz[e]∗(n−siz[e])∗(endpos集合大小)(siz是子树大小)
枚举每个点考虑一下他和他父亲就可以了
#include<bits/stdc++.h>
using namespace std;
#define int long long
inline int read(){
char ch=getchar();
int res=0;
while(!isdigit(ch))ch=getchar();
while(isdigit(ch))res=(res<<3)+(res<<1)+(ch^48);
return res;
}
const int N=500005;
int tot,last;
long long ans;
int c[N<<1],p[N<<1],len[N<<1],link[N<<1],nxt[N<<1][27],cnt[N<<1];
char a[N];
inline int extend(int c){
int cur=++tot,p=last;last=cur;
len[cur]=len[p]+1,cnt[cur]=1;
for(;p&&!nxt[p][c];p=link[p])nxt[p][c]=cur;
if(!p)link[cur]=1;
else{
int q=nxt[p][c];
if(len[p]+1==len[q])link[cur]=q;
else{
int clo=++tot;
for(int i=0;i<=26;i++)nxt[clo][i]=nxt[q][i];
link[clo]=link[q],len[clo]=len[p]+1;
for(;p&&nxt[p][c]==q;p=link[p])nxt[p][c]=clo;
link[q]=link[cur]=clo;
}
}
}
signed main(){
scanf("%s",a+1),last=tot=1;
int lenth=strlen(a+1);
for(int i=lenth;i>=1;i--)extend(a[i]-'a');
for(int i=1;i<=tot;i++)c[len[i]]++;
for(int i=1;i<=tot;i++)c[i]+=c[i-1];
for(int i=1;i<=tot;i++)p[c[len[i]]--]=i;
for(int i=tot;i>=1;i--){
cnt[link[p[i]]]+=cnt[p[i]];
ans+=(len[p[i]]-len[link[p[i]]])*(cnt[p[i]])*(lenth-cnt[p[i]]);
}
cout<<ans;
}