【BZOJ5299】【CQOI2018】解锁屏幕(状压dp)

传送门

状压dp简单题

f [ t ] [ i ] [ s t a ] f[t][i][sta] f[t][i][sta]表示第 t t t个点,当前是 i i i,走过的状态为 s t a sta sta时的方案数

可以先 O ( n 3 ) O(n^3) O(n3)预处理每2个点之间要提前经过的状态

直接枚举转移就可以了
发现 f f f第一维不需要,就只用维护2维了

#include<bits/stdc++.h>
using namespace std;
#define ll long long
inline int read(){
	char ch=getchar();
	int res=0,f=1;
	while(!isdigit(ch)){if(ch=='-')f=-f;ch=getchar();}
	while(isdigit(ch))res=res*10+(ch^48),ch=getchar();
	return res*f;
}
const int N=23;
const int M=(1<<21);
int bet[N][N];
const double eps=1e-8;
const int mod=100000007;
int f[23][M],n,lb[M],ans;
struct point{
	double x,y;
	point(double _x=0,double _y=0){
		x=_x,y=_y;
	}
	friend inline point operator -(const point &a,const point &b){
		return point(a.x-b.x,a.y-b.y);
	}
	friend inline double operator *(const point &a,const point &b){
		return a.x*b.y-a.y*b.x;
	}
}p[N];
int main(){
	for(int i=1;i<M;i++) lb[i]=lb[i^(i&-i)]+1;
	n=read();
	for(int i=1;i<=n;i++)p[i].x=read(),p[i].y=read();
	for(int i=1;i<=n;i++){
		for(int j=1;j<=n;j++){
			if(j==i)continue;
			for(int k=1;k<=n;k++){
				if(k==i||k==j)continue;
				if(p[k].x>max(p[i].x,p[j].x)||p[k].x<min(p[i].x,p[j].x))continue;
				if(p[k].y<min(p[i].y,p[j].y)||p[k].y>max(p[i].y,p[j].y))continue;
				if((p[i].x-p[j].x)*(p[i].y-p[k].y)==(p[i].x-p[k].x)*(p[i].y-p[j].y))bet[i][j]+=1<<(k-1);
			}
		}
	}
	int sta=(1<<n)-1;
	for(int i=1;i<=n;i++){
		f[i][(1<<(i-1))]=1;
	}
	for(int t=1;t<=n;t++)
	for(int i=1;i<=sta;i++)if(lb[i]==t)
	for(int p=1;p<=n;p++){
		if((!f[p][i])||(!(i&(1<<(p-1)))))continue;
		for(int j=1;j<=n;j++){
			if((i&(1<<(j-1))))continue;
			if((i&bet[p][j])==bet[p][j])(f[j][i|(1<<(j-1))]+=f[p][i])%=mod;
		}
	}
	for(int p=1;p<=n;p++){
		for(int i=1;i<=sta;i++){
			if(lb[i]>=4)(ans+=f[p][i])%=mod;//,cout<<p<<" "<<i<<":"<<f[p][i]<<'\n';
		}
	}
	cout<<ans<<'\n';
}
根据引用所述,交错序列是一个仅由0和1构成的序列,其中没有相邻的1(可以有相邻的0)。特征值定义为x^ay^b,其中x和y分别表示0和1出现的次数。长度为n的交错序列可能有多个。问题要求计算所有长度为n的交错序列特征值的和除以m的余数。 根据引用所述,输入文件包含一个行,该行包含三个整数n、a、b和m。其中,1≤n≤10000000,0≤a、b≤45,m<100000000。 为了解决这个问题,可以使用动态规划和矩阵快速幂优化的方法,具体实现可以参考引用提到的相关算法。算法的思路是通过计算长度为n的交错序列的特征值,然后将所有特征值求和并对m取余数。 具体步骤如下: 1. 使用动态规划计算长度为n的所有交错序列的特征值,将结果保存在一个矩阵中。 2. 使用矩阵快速幂优化,将动态规划的过程进行优化。 3. 对优化后的结果进行求和,并对m取余数。 4. 输出结果。 参考引用给出的博客中的代码实现,可以帮助你更好地理解和实现该算法。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* *3* [BZOJ5298 CQOI2018 交错序列 【DP+矩阵快速幂优化】*](https://blog.csdn.net/weixin_30892987/article/details/99470493)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT0_1"}}] [.reference_item style="max-width: 100%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值