状压dp简单题
f [ t ] [ i ] [ s t a ] f[t][i][sta] f[t][i][sta]表示第 t t t个点,当前是 i i i,走过的状态为 s t a sta sta时的方案数
可以先 O ( n 3 ) O(n^3) O(n3)预处理每2个点之间要提前经过的状态
直接枚举转移就可以了
发现
f
f
f第一维不需要,就只用维护2维了
#include<bits/stdc++.h>
using namespace std;
#define ll long long
inline int read(){
char ch=getchar();
int res=0,f=1;
while(!isdigit(ch)){if(ch=='-')f=-f;ch=getchar();}
while(isdigit(ch))res=res*10+(ch^48),ch=getchar();
return res*f;
}
const int N=23;
const int M=(1<<21);
int bet[N][N];
const double eps=1e-8;
const int mod=100000007;
int f[23][M],n,lb[M],ans;
struct point{
double x,y;
point(double _x=0,double _y=0){
x=_x,y=_y;
}
friend inline point operator -(const point &a,const point &b){
return point(a.x-b.x,a.y-b.y);
}
friend inline double operator *(const point &a,const point &b){
return a.x*b.y-a.y*b.x;
}
}p[N];
int main(){
for(int i=1;i<M;i++) lb[i]=lb[i^(i&-i)]+1;
n=read();
for(int i=1;i<=n;i++)p[i].x=read(),p[i].y=read();
for(int i=1;i<=n;i++){
for(int j=1;j<=n;j++){
if(j==i)continue;
for(int k=1;k<=n;k++){
if(k==i||k==j)continue;
if(p[k].x>max(p[i].x,p[j].x)||p[k].x<min(p[i].x,p[j].x))continue;
if(p[k].y<min(p[i].y,p[j].y)||p[k].y>max(p[i].y,p[j].y))continue;
if((p[i].x-p[j].x)*(p[i].y-p[k].y)==(p[i].x-p[k].x)*(p[i].y-p[j].y))bet[i][j]+=1<<(k-1);
}
}
}
int sta=(1<<n)-1;
for(int i=1;i<=n;i++){
f[i][(1<<(i-1))]=1;
}
for(int t=1;t<=n;t++)
for(int i=1;i<=sta;i++)if(lb[i]==t)
for(int p=1;p<=n;p++){
if((!f[p][i])||(!(i&(1<<(p-1)))))continue;
for(int j=1;j<=n;j++){
if((i&(1<<(j-1))))continue;
if((i&bet[p][j])==bet[p][j])(f[j][i|(1<<(j-1))]+=f[p][i])%=mod;
}
}
for(int p=1;p<=n;p++){
for(int i=1;i<=sta;i++){
if(lb[i]>=4)(ans+=f[p][i])%=mod;//,cout<<p<<" "<<i<<":"<<f[p][i]<<'\n';
}
}
cout<<ans<<'\n';
}