既然是问一堆串拼出一个串的子串的方案数,那显然是要在这个串的 S a m Sam Sam上 d p dp dp了
考虑
f
[
i
]
[
j
]
f[i][j]
f[i][j]表示前
i
i
i个匹配串,匹配到
j
j
j的方案数
则可以暴力枚举自动机上的点看能不能从这个点开始匹配完一个串
可以的话就转移
复杂度
O
(
S
∗
∑
∣
l
e
n
a
i
∣
)
O(S*\sum |len_{a_i}|)
O(S∗∑∣lenai∣)
#include<bits/stdc++.h>
using namespace std;
#define ll long long
inline int read(){
char ch=getchar();
int res=0,f=1;
while(!isdigit(ch)){if(ch=='-')f=-f;ch=getchar();}
while(isdigit(ch))res=(res+(res<<2)<<1)+(ch^48),ch=getchar();
return res*f;
}
const int N=20005;
const ll mod=1e9+7;
int A[N],B[N],k,n,link[N],siz[N],len[N],tot,last;
map<int,int>nxt[N];
char s[N],ch[N];
ll f[105][N],ans;
inline void sa_extend(int c){
int cur=++tot,p=last;
len[cur]=len[p]+1,siz[cur]=1;
for(;p&&!nxt[p][c];p=link[p])nxt[p][c]=cur;
if(!p)link[cur]=1;
else {
int q=nxt[p][c];
if(len[q]==len[p]+1)link[cur]=q;
else{
int clo=++tot;
len[clo]=len[p]+1,link[clo]=link[q];
nxt[clo]=nxt[q];
for(;p&&nxt[p][c]==q;p=link[p])nxt[p][c]=clo;
link[q]=link[cur]=clo;
}
}
last=cur;
}
int main(){
last=tot=1;
k=read();
scanf("%s",s);
int ln=strlen(s);
for(int i=0;i<ln;i++)sa_extend(s[i]-'A');
for(int i=1;i<=tot;i++)A[len[i]]++;
for(int i=1;i<=tot;i++)A[i]+=A[i-1];
for(int i=1;i<=tot;i++)B[A[len[i]]--]=i;
for(int i=tot;i>=1;i--)siz[link[B[i]]]+=siz[B[i]];
f[0][1]=1;
for(int i=1;i<=k;i++){
int T=read();
while(T--){
scanf("%s",s);
ln=strlen(s);
for(int p=1;p<=tot;p++){
if(f[i-1][p]==0)continue;
int now=p;
for(int j=0;j<ln;j++){
if(!nxt[now][s[j]-'A']){
now=-1;break;
}
else now=nxt[now][s[j]-'A'];
}
if(now!=-1)(f[i][now]+=f[i-1][p])%=mod;
}
}
}
for(int i=1;i<=tot;i++){
(ans+=1ll*siz[i]*f[k][i])%=mod;
}
cout<<ans<<'\n';
}