【LOJ2542】【PKUWC2018】—随机游走(Min-Max容斥+树形dp+FMT)

传送门

容斥好题


考虑经过一个点集所有点的期望不好处理
我们考虑 m i n − m a x min-max minmax容斥
a n s = ∑ T ⊆ S E ( m i n ( T ) ) ans=\sum_{T\subseteq S}E(min(T)) ans=TSE(min(T))

现在我们先考虑怎么对于一个集合 T T T求出有一个被访问的期望
f [ i ] f[i] f[i]表示点 i i i走到 T T T中的点的期望步数, i n [ u ] in[u] in[u]表示 u u u的度数

f [ u ] = { 0 u ∈ T ( f [ f a [ u ] ] + 1 + ∑ v = s o n [ u ] ( f [ v ] + 1 ) ) / i n [ u ] o t h e r w i s e f[u]=\begin{cases} 0 & u\in T\\ (f[fa[u]]+1+\sum_{v=son[u]}(f[v]+1))/in[u] & otherwise \end{cases} f[u]={0(f[fa[u]]+1+v=son[u](f[v]+1))/in[u]uTotherwise

高斯消元肯定是行不通的

而这中问题有个手动消元技巧:

对于叶子节点,其期望就是 f [ f a [ u ] ] + 1 f[fa[u]]+1 f[fa[u]]+1
只和父亲有关了,后面一项是一个常数

考虑对于 u u u
有柿子 f [ u ] ∗ i n [ u ] − i n [ u ] − ∑ v = s o n [ u ] f [ v ] = f [ f a [ u ] ] f[u]*in[u]-in[u]-\sum_{v=son[u]}f[v]=f[fa[u]] f[u]in[u]in[u]v=son[u]f[v]=f[fa[u]]
f [ u ] f[u] f[u]只和 f a [ u ] fa[u] fa[u] v v v有关
考虑 f [ v ] f[v] f[v],只和 u u u s o n [ v ] son[v] son[v]有关……
一直到边界时 ( x ∈ T ) (x\in T) (xT) x x x为叶子节点时,就只和 f a [ x ] fa[x] fa[x]有关了(假装0也有关)

假设关系为 f [ x ] = A ∗ f [ f a [ x ] ] + B f[x]=A*f[fa[x]]+B f[x]=Af[fa[x]]+B
那对于 y = f a [ x ] y=fa[x] y=fa[x]来说,就变成了
f [ y ] ∗ i n [ y ] − ∑ x = s o n [ y ] A x ∗ f [ y ] − ∑ x = s o n [ y ] B x = f [ f a [ y ] ] f[y]*in[y]-\sum_{x=son[y]}A_x*f[y]-\sum_{x=son[y]}B_x=f[fa[y]] f[y]in[y]x=son[y]Axf[y]x=son[y]Bx=f[fa[y]]
也就是 A ∗ f [ y ] + B = f [ f a [ y ] ] A*f[y]+B=f[fa[y]] Af[y]+B=f[fa[y]]
换一下就又是 f [ y ] = f [ f a [ y ] ] A + B A → A ∗ f [ f a [ y ] ] + B f[y]=\frac{f[fa[y]]}{A}+\frac B A\rightarrow A*f[fa[y]]+B f[y]=Af[fa[y]]+ABAf[fa[y]]+B的形式!
那这样就可以一步步回带,知道对于 r t rt rt
就是 A ∗ f [ r t ] + B = 0 , ( r t A*f[rt]+B=0,(rt Af[rt]+B=0rt没有父亲,右边就是 0 ) 0) 0
就可以解出起点出发的期望了
复杂度是 O ( n ) O(n) O(n)

2 n 2^n 2n个集合分别做一次就得到所有集合的 E ( m i n ) E(min) E(min)
考虑对于一个询问点集 S S S,我们要枚举其所有子集求和

考虑 F M T FMT FMT预处理出所有集合的答案, O ( 1 ) O(1) O(1)回答

时间复杂度 O ( n 2 n ) O(n2^n) O(n2n)

#include<bits/stdc++.h>
using namespace std;
const int RLEN=1<<21|1;
inline char gc(){
	static char ibuf[RLEN],*ib,*ob;
	(ib==ob)&&(ob=(ib=ibuf)+fread(ibuf,1,RLEN,stdin));
	return (ib==ob)?EOF:*ib++;
} 
#define gc getchar
inline int read(){
	char ch=gc();
	int res=0,f=1;
	while(!isdigit(ch))f^=ch=='-',ch=gc();
	while(isdigit(ch))res=(res+(res<<2)<<1)+(ch^48),ch=gc();
	return f?res:-res;
}
#define ll long long
#define pii pair<int,int>
#define fi first
#define se second
#define pb push_back
#define mp make_pair
#define re register
const int mod=998244353;
const int N=20,M=1<<20;
inline int add(int a,int b){return a+b>=mod?a+b-mod:a+b;}
inline void Add(int &a,int b){a=add(a,b);}
inline int dec(int a,int b){return a>=b?a-b:a-b+mod;}
inline void Dec(int &a,int b){a=dec(a,b);}
inline int mul(int a,int b){return 1ll*a*b>=mod?1ll*a*b%mod:a*b;}
inline void Mul(int &a,int b){a=mul(a,b);}
inline int ksm(int a,int b,int res=1){for(;b;b>>=1,Mul(a,a))(b&1)&&(res=mul(res,a));return res;}
vector<int> e[N];
int cnt[M],ans[M],f[M],in[N];
struct coef{
	int x,y;
	coef(int _x=0,int _y=0):x(_x),y(_y){}
	friend inline coef operator +(const coef &a,const coef &b){
		return coef(add(a.x,b.x),add(a.y,b.y));
	}
	friend inline coef operator -(const coef &a,const coef &b){
		return coef(dec(a.x,b.x),dec(a.y,b.y));
	}
	friend inline coef operator *(const coef &a,const int &b){
		return coef(mul(a.x,b),mul(a.y,b));
	}
};
int n,q,rt,sta;
coef dfs(int s,int u,int fa){
	if(s&(1<<(u-1)))return coef();
	coef now(in[u],dec(0,in[u]));
	for(int &v:e[u])
		if(v!=fa)now=now-dfs(s,v,u);
	int inv=ksm(now.x,mod-2);
	return coef(inv,mul(dec(0,now.y),inv));
}
int main(){
	n=read(),q=read(),rt=read();
	for(int i=1;i<n;i++){
		int u=read(),v=read();
		e[u].pb(v),e[v].pb(u);
		in[u]++,in[v]++;
	}sta=1<<n;
	for(int i=1;i<sta;i++)
		for(int j=0;j<n;j++)
		if(i&(1<<j))cnt[i]++;
	for(int i=1;i<sta;i++)
		f[i]=dfs(i,rt,0).y;
	for(int i=1;i<sta;i++)
		if(!(cnt[i]&1))f[i]=dec(0,f[i]);
	for(int i=0;i<n;i++)
	for(int j=0;j<sta;j++)
		if(j&(1<<i))Add(f[j],f[j^(1<<i)]);
	while(q--){
		int k=read(),s=0;
		for(int i=1;i<=k;i++)
			s|=(1<<(read()-1));
		cout<<f[s]<<'\n';
	}
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值