「PKUWC 2018」随机游走

传送门


problem

给定一棵 n n n 个结点的树,你从点 x x x 出发,每次等概率随机选择一条与所在点相邻的边走过去。

Q Q Q 次询问,每次询问给定一个集合 S S S,求如果从 x x x 出发一直随机游走,直到点集 S S S 中所有点都至少经过一次的话,期望游走几步。

特别地,点 x x x(即起点)视为一开始就被经过了一次。

答案对 998244353 998244353 998244353 取模。

数据范围: 1 ≤ n ≤ 18 1\le n\le 18 1n18 1 ≤ Q ≤ 5000 1\le Q\le 5000 1Q5000 1 ≤ k ≤ n 1\le k\le n 1kn


solution

看到这种 “ “ S S S 中每个点至少经过一次 ” ” 的期望,我们考虑 min-max 容斥,把问题转换成求 “ “ S S S 中经过第一个点 ” ” 的期望。

我们用 f ( i , S ) f(i,S) f(i,S) 表示 i i i 到集合 S S S第一个点的期望时间,那么显然 m i n ( S ) = f ( x , S ) min(S)=f(x,S) min(S)=f(x,S)

f ( i , S ) f(i,S) f(i,S) 的递推式也容易求:

f ( i , S ) = { 0 ( i ∈ S ) f ( f a i , S ) d e g i + ∑ j ∈ s o n i f ( j , S ) d e g i + 1 ( i ∉ S ) f(i,S)= \begin{cases} 0 &(i\in S)\\ \frac{f(fa_i,S)}{deg_i}+\frac{\sum_{j\in son_i}f(j,S)}{deg_i}+1&(i\notin S) \end{cases} f(i,S)={0degif(fai,S)+degijsonif(j,S)+1(iS)(i/S)

但是这样计算的话,每个点又有父亲的贡献,又有儿子的贡献,不好处理。

为了方便,以下的 f [ i ] f[i] f[i] 表示 f ( i , S ) f(i,S) f(i,S)

有一个技巧,我们把 f [ i ] f[i] f[i] 表示成 A [ i ] × f [ f a ] + B [ i ] A[i]\times f[fa]+B[i] A[i]×f[fa]+B[i],然后化简上式( f a fa fa i i i 的父亲):

f [ i ] = 1 d e g [ i ] ( f [ f a ] + ∑ j ∈ s o n i f [ j ] ) + 1 f [ i ] = 1 d e g [ i ] ( f [ f a ] + ∑ j ∈ s o n i ( A [ j ] × f [ i ] + B [ j ] ) ) + 1 ( 1 − ∑ j ∈ s o n i A [ j ] d e g i ) f [ i ] = 1 d e g [ i ] f [ f a ] + 1 d e g [ i ] ∑ j ∈ s o n i B [ j ] + 1 ( d e g [ i ] − ∑ j ∈ s o n i A [ j ] ) f [ i ] = f [ f a ] + ∑ j ∈ s o n i B [ j ] + d e g [ i ] f [ i ] = 1 ( d e g [ i ] − ∑ j ∈ s o n i A [ j ] ) f [ f a ] + ∑ j ∈ s o n i B [ j ] + d e g [ i ] ( d e g [ i ] − ∑ j ∈ s o n i A [ j ] ) \begin{aligned} f[i]&=\frac 1 {deg[i]}(f[fa]+\sum_{j\in son_i}f[j])+1\\ f[i]&=\frac 1 {deg[i]}(f[fa]+\sum_{j\in son_i}(A[j]\times f[i]+B[j]))+1\\ (1-\frac{\sum_{j\in son_i} A[j]}{deg_i})f[i]&=\frac 1 {deg[i]}f[fa]+\frac 1 {deg[i]}\sum_{j\in son_i}B[j]+1\\ (deg[i]-\sum_{j\in son_i}A[j])f[i]&=f[fa]+\sum_{j\in son_i}B[j]+deg[i]\\ f[i]&=\frac{1}{(deg[i]-\sum_{j\in son_i}A[j])}f[fa]+\frac{\sum_{j\in son_i}B[j]+deg[i]}{(deg[i]-\sum_{j\in son_i}A[j])} \end{aligned} f[i]f[i](1degijsoniA[j])f[i](deg[i]jsoniA[j])f[i]f[i]=deg[i]1(f[fa]+jsonif[j])+1=deg[i]1(f[fa]+jsoni(A[j]×f[i]+B[j]))+1=deg[i]1f[fa]+deg[i]1jsoniB[j]+1=f[fa]+jsoniB[j]+deg[i]=(deg[i]jsoniA[j])1f[fa]+(deg[i]jsoniA[j])jsoniB[j]+deg[i]

所以说, A [ i ] = 1 ( d e g [ i ] − ∑ j ∈ s o n i A [ j ] ) A[i]=\frac{1}{(deg[i]-\sum_{j\in son_i}A[j])} A[i]=(deg[i]jsoniA[j])1 B [ i ] = ∑ j ∈ s o n i B [ j ] + d e g [ i ] ( d e g [ i ] − ∑ j ∈ s o n i A [ j ] ) B[i]=\frac{\sum_{j\in son_i}B[j]+deg[i]}{(deg[i]-\sum_{j\in son_i}A[j])} B[i]=(deg[i]jsoniA[j])jsoniB[j]+deg[i]

然后就可以从下往上递推了。

min-max 容斥:

m a x ( S ) = ∑ T ⊆ S ( − 1 ) ∣ T ∣ − 1 m i n ( T ) max(S)=\sum_{T\subseteq S}(-1)^{|T|-1}min(T) max(S)=TS(1)T1min(T)

我们乘个容斥系数,再用 FWT 预处理出子集和就可以 O ( k ) O(k) O(k) 算答案了。

时间复杂度 O ( n 2 n ) O(n2^n) O(n2n),好像还要乘个 log ⁡ \log log 因为要算逆元。


code

#include<cstdio>
#include<cstring>
#include<algorithm>
#define P 998244353
using namespace std;
const int N=50,M=500005;
int n,Q,x;
int A[N],B[N],deg[N],f[M],bit[M];
int t,first[N],v[N],nxt[N];
int add(int x,int y)  {return x+y>=P?x+y-P:x+y;}
int dec(int x,int y)  {return x-y< 0?x-y+P:x-y;}
int mul(int x,int y)  {return 1ll*x*y%P;}
int power(int a,int b,int ans=1){
	for(;b;b>>=1,a=mul(a,a))
		if(b&1)  ans=mul(ans,a);
	return ans;
}
void edge(int x,int y){
	nxt[++t]=first[x],first[x]=t,v[t]=y;
}
void dfs(int x,int fa,int Set){
	if(Set&(1<<(x-1)))  return A[x]=B[x]=0,void();
	A[x]=B[x]=deg[x];
	for(int i=first[x];i;i=nxt[i]){
		int to=v[i];
		if(to==fa)  continue;
		dfs(to,x,Set);
		A[x]=dec(A[x],A[to]);
		B[x]=add(B[x],B[to]);
	}
	A[x]=power(A[x],P-2);
	B[x]=mul(A[x],B[x]);
}
void FWT(int *f){
	for(int i=0;i<n;++i)
		for(int j=0;j<(1<<n);++j)
			if(j&(1<<i))  f[j]=add(f[j],f[j^(1<<i)]);
}
int main(){
	int u,v,k,now;
	scanf("%d%d%d",&n,&Q,&x);
	for(int i=1;i<n;++i){
		scanf("%d%d",&u,&v);
		edge(u,v),edge(v,u),++deg[u],++deg[v];
	}
	for(int i=1;i<(1<<n);++i){
		bit[i]=bit[i>>1]+(i&1);
		dfs(x,0,i),f[i]=(bit[i]&1)?B[x]:P-B[x];
	}
	FWT(f);
	while(Q--){
		scanf("%d",&k),now=0;
		while(k--)  scanf("%d",&u),now|=(1<<(u-1));
		printf("%d\n",f[now]);
	}
	return 0;
}
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值