斯特林数学习笔记

第一类斯特林数

定义

s ( i , j ) s(i,j) s(i,j)表示把 i i i个物品分成 j j j个环的方案,或者记做 [ i j ] \begin{bmatrix}i\\j\end{bmatrix} [ij]

递推式

考虑第 i i i个物品的划分
s ( i , j ) = s ( i − 1 , j − 1 ) + s ( i − 1 , j ) ∗ ( i − 1 ) s(i,j)=s(i-1,j-1)+s(i-1,j)*(i-1) s(i,j)=s(i1,j1)+s(i1,j)(i1)

枚举第 1 1 1个物品所在环的大小

s ( i , j ) = ∑ k = 1 n ( n − 1 k − 1 ) ( k − 1 ) ! s ( i − k , j − 1 ) s(i,j)=\sum_{k=1}^{n}{n-1\choose k-1}(k-1)!s(i-k,j-1) s(i,j)=k=1n(k1n1)(k1)!s(ik,j1)

快速求 s ( n , i ) s(n,i) s(n,i)

考虑构造生成函数 F n = ∑ i = 0 ∞ s ( n , i ) x i F_n=\sum_{i=0}^{\infty}s(n,i)x^i Fn=i=0s(n,i)xi
由递推式可得
F n = x F n − 1 + ( n − 1 ) F ( n − 1 ) = ( x + n − 1 ) F ( n − 1 ) F_n=xF_{n-1}+(n-1)F(n-1)=(x+n-1)F(n-1) Fn=xFn1+(n1)F(n1)=(x+n1)F(n1)

可得 F n = x n ‾ F_n=x^{\overline n} Fn=xn
∑ i = 0 n s ( n , i ) x i = x n ‾ \sum_{i=0}^{n}s(n,i)x^i=x^{\overline n} i=0ns(n,i)xi=xn
这是就是第一类斯特林数和上升幂的关系

而且也有关于下降幂,由于
x n ‾ = ( − 1 ) n ( − x ) n ‾ x^{\underline n}=(-1)^n(-x)^{\overline n} xn=(1)n(x)n

所以 ∑ i = 0 n ( − 1 ) n − i s ( n , i ) x i = x n ‾ = ( x n ) n ! \sum_{i=0}^{n}(-1)^{n-i}s(n,i)x^i=x^{\underline n}={x\choose n}n! i=0n(1)nis(n,i)xi=xn=(nx)n!


对和上升幂的式子
分治 N T T NTT NTT可以做到 O ( n l o g 2 n ) O(nlog^2n) O(nlog2n)

考虑倍增

如果 n n n为奇数,递归求解 n − 1 n-1 n1,乘一个 x + n − 1 x+n-1 x+n1

如果 n n n为偶数
x 2 n ‾ = x n ‾ ( x + n ) n ‾ x^{\overline {2n}}=x^{\overline n}(x+n)^{\overline n} x2n=xn(x+n)n
假设已经求出了 x n ‾ = f 1 ( x ) = ∑ i = 0 n a i x i x^{\overline n}=f1(x)=\sum_{i=0}^{n}a_ix^i xn=f1(x)=i=0naixi
考虑如何求出
f 2 ( x ) = ∑ i = 0 n a i ( x + n ) i f2(x)=\sum_{i=0}^n a_i(x+n)^i f2(x)=i=0nai(x+n)i

f 2 ( x ) = ∑ i = 0 n a i ∑ j = 0 i x j n i − j ( i j ) f2(x)=\sum_{i=0}^{n}a_i\sum_{j=0}^{i}x^jn^{i-j}{i\choose j} f2(x)=i=0naij=0ixjnij(ji)

            = ∑ j = 0 n x j j ! ∑ i = j n a i i ! n i − j ( i − j ) ! \ \ \ \ \ \ \ \ \ \ \ =\sum_{j=0}^{n}\frac{x^j}{j!}\sum_{i=j}^na_ii!\frac{n^{i-j}}{(i-j)!}            =j=0nj!xji=jnaii!(ij)!nij

            = ∑ j = 0 n x j j ! ∑ i = 0 n − j a i + j ( i + j ) ! n i i ! \ \ \ \ \ \ \ \ \ \ \ =\sum_{j=0}^{n}\frac{x^j}{j!}\sum_{i=0}^{n-j}a_{i+j}(i+j)!\frac{n^{i}}{i!}            =j=0nj!xji=0njai+j(i+j)!i!ni

A ( x ) = ∑ i = 0 n a i i ! x i , B ( x ) = ∑ i = 0 n n n − i ( n − i ) ! x i A(x)=\sum_{i=0}^n a_ii!x^i,B(x)=\sum_{i=0}^n\frac{n^{n-i}}{(n-i)!}x^i A(x)=i=0naii!xi,B(x)=i=0n(ni)!nnixi

( A ∗ B ) ( x ) (A*B)(x) (AB)(x)乘出来左移 n n n位即可

复杂度 T ( n ) = T ( n 2 ) + O ( n l o g n ) = O ( n l o g n ) T(n)=T(\frac n 2)+O(nlogn)=O(nlogn) T(n)=T(2n)+O(nlogn)=O(nlogn)

代码:

inline poly calc_s(int n){
	poly res;
	if(n==1){res.pb(0),res.pb(1);return res;}
	if(n&1){
		res=calc_s(n-1);
		res.resize(n+1);
		for(int i=n;i;i--)res[i]=add(res[i-1],mul(res[i],n-1));
		return res;
	}
	int mid=n>>1;
	poly a=calc_s(mid),b(mid+1),c(mid+1);
	for(int i=0;i<=mid;i++)c[i]=mul(a[i],fac[i]);
	for(int i=0,p=1;i<=mid;i++,Mul(p,mid))b[i]=mul(p,ifac[i]);
	reverse(b.bg(),b.bg()+mid+1);
	c=c*b;for(int i=0;i<=mid;i++)c[i]=mul(c[i+mid],ifac[i]);
	c.resize(mid+1),res=a*c;return res;
}

例题:传送门

第一类斯特林数快速求行
第一类斯特林数快速求列

第二类斯特林数

定义

S ( i , j ) S(i,j) S(i,j)表示把 i i i个物品分成 j j j个集合的方案数,也记作 { n m } \begin {Bmatrix} n \\ m\end {Bmatrix} {nm}

递推式

考虑第 i i i个数的划分

S ( i , j ) = S ( i − 1 , j − 1 ) + j ∗ S ( i − 1 , j ) S(i,j)=S(i-1,j-1)+j*S(i-1,j) S(i,j)=S(i1,j1)+jS(i1,j)

考虑第一个数所在的集合大小

S ( i , j ) = ∑ k = 1 i ( i − 1 k − 1 ) S ( i − k , j − 1 ) S(i,j)=\sum_{k=1}^{i}{i-1\choose k-1}S(i-k,j-1) S(i,j)=k=1i(k1i1)S(ik,j1)

快速求解 S ( n , x ) S(n,x) S(n,x)

考虑 x n x^n xn是用 x x x种颜色去染 n n n个格子,枚举最后用了几种颜色,可得

x n = ∑ i = 0 m i n ( x , n ) ( x i ) i ! S ( n , i ) x^n=\sum_{i=0}^{min(x,n)}{x\choose i}i! S(n,i) xn=i=0min(x,n)(ix)i!S(n,i)

实际上由于 ( i j ) {i\choose j} (ji) S ( i , j ) S(i,j) S(i,j) i < j i<j i<j的时候都为0

所以写作

x n = ∑ i = 0 n ( x i ) i ! S ( n , i ) x^n=\sum_{i=0}^{n}{x\choose i}i! S(n,i) xn=i=0n(ix)i!S(n,i)

x n = ∑ i = 0 x ( x i ) i ! S ( n , i ) x^n=\sum_{i=0}^{x}{x\choose i}i! S(n,i) xn=i=0x(ix)i!S(n,i)

都可以
在实际题目中可能会根据不同情况选择变量

对第二个式子二项式反演

x ! S ( n , x ) = ∑ i = 0 x ( − 1 ) x − i ( x i ) i n x!S(n,x)=\sum_{i=0}^x(-1)^{x-i}{x\choose i}i^n x!S(n,x)=i=0x(1)xi(ix)in

S ( n , x ) = ∑ i = 0 x ( − 1 ) x − i ( x − i ) ! i n i ! S(n,x)=\sum_{i=0}^x\frac{(-1)^{x-i}}{(x-i)!}\frac{i^n}{i!} S(n,x)=i=0x(xi)!(1)xii!in

这是一个卷积的形式, N T T NTT NTT可以 O ( n l o g n ) O(nlogn) O(nlogn)求出

poly f,g;
for(int i=0;i<=n;i++)f.pb((i&1)?mod-ifac[i]:ifac[i]);
for(int i=0;i<=n;i++)g.pb(mul(ksm(i,n),ifac[i]));
poly S=f*g;

第二类斯特林数快速求行
第二类斯特林数快速求列

补充一个是 s ( n , k ) = S ( − k , − n ) s(n,k)=S(-k,-n) s(n,k)=S(k,n)(虽然不知道这个会有什么鬼用)

斯特林反演:

∑ i = 1 n ( − 1 ) i − 1 S n , i ( i − 1 ) ! = [ n = 1 ] \sum_{i=1}^n(-1)^{i-1}S_{n,i}(i-1)!=[n=1] i=1n(1)i1Sn,i(i1)!=[n=1]
或者写作

f ( n ) = ∑ i = 1 n S ( n , i ) g ( i ) f(n)=\sum_{i=1}^nS(n,i)g(i) f(n)=i=1nS(n,i)g(i)
g ( n ) = ∑ i = 1 n ( − 1 ) n − i s ( n , i ) f ( i ) g(n)=\sum_{i=1}^n(-1)^{n-i}s(n,i)f(i) g(n)=i=1n(1)nis(n,i)f(i)

看到一个简单清楚的证明:
f n = ∑ i = 0 n S ( n , i ) g i f_n=\sum_{i=0}^nS(n,i)g_i fn=i=0nS(n,i)gi
那么写成生成函数是
f ( x ) = g ( e x − 1 ) f(x)=g(e^x-1) f(x)=g(ex1),即 [ x n ] f = ∑ i = 0 n g i ( ∑ j = 1 ∞ x j j ! ) i [x^n]f=\sum_{i=0}^ng_i(\sum_{j=1}^{\infty}\frac{x^j}{j!})^i [xn]f=i=0ngi(j=1j!xj)i
e x − 1 e^x-1 ex1是集合的 e g f egf egf,所以后面乘上 n ! n! n!就是 n n n分成 i i i个环的方案 = S ( n , i ) =S(n,i) =S(n,i)
换元得 f ( ln ⁡ ( x + 1 ) ) = g ( x ) f(\ln(x+1))=g(x) f(ln(x+1))=g(x)
[ x n ] g = ∑ i = 0 n f i ( ∑ j = 1 ∞ x j ( − 1 ) j − 1 j ) i [x^n]g=\sum_{i=0}^nf_i(\sum_{j=1}^{\infty}\frac{x^j(-1)^{j-1}}{j})^i [xn]g=i=0nfi(j=1jxj(1)j1)i
后面 ∑ j x j j \sum_j\frac{x^j}{j} jjxj是环的 e g f egf egf,不过有个 ( − 1 ) j − 1 (-1)^{j-1} (1)j1,总共是 n n n
可以直接得到总共一定是 ( − 1 ) n − i (-1)^{n-i} (1)ni,而环对应就是 s ( n , i ) s(n,i) s(n,i)
所以得证

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值