考虑构造生成函数 F n = ∑ i = 0 ∞ s ( n , i ) x i F_n=\sum_{i=0}^{\infty}s(n,i)x^i Fn=∑i=0∞s(n,i)xi
由第一类斯特林数的递推式可得
F n = x F n − 1 + ( n − 1 ) F ( n − 1 ) = ( x + n − 1 ) F ( n − 1 ) = x n ‾ F_n=xF_{n-1}+(n-1)F(n-1)=(x+n-1)F(n-1)=x^{\overline n} Fn=xFn−1+(n−1)F(n−1)=(x+n−1)F(n−1)=xn
考虑倍增
如果 n n n为奇数,递归求解 n − 1 n-1 n−1,乘一个 x + n − 1 x+n-1 x+n−1
如果
n
n
n为偶数
有
x
2
n
‾
=
x
n
‾
(
x
+
n
)
n
‾
x^{\overline {2n}}=x^{\overline n}(x+n)^{\overline n}
x2n=xn(x+n)n
假设已经求出了
x
n
‾
=
f
1
(
x
)
=
∑
i
=
0
n
a
i
x
i
x^{\overline n}=f1(x)=\sum_{i=0}^{n}a_ix^i
xn=f1(x)=∑i=0naixi
考虑如何求出
f
2
(
x
)
=
∑
i
=
0
n
a
i
(
x
+
n
)
i
f2(x)=\sum_{i=0}^n a_i(x+n)^i
f2(x)=∑i=0nai(x+n)i
f 2 ( x ) = ∑ i = 0 n a i ∑ j = 0 i x j n i − j ( i j ) f2(x)=\sum_{i=0}^{n}a_i\sum_{j=0}^{i}x^jn^{i-j}{i\choose j} f2(x)=∑i=0nai∑j=0ixjni−j(ji)
= ∑ j = 0 n x j j ! ∑ i = j n a i i ! n i − j ( i − j ) ! \ \ \ \ \ \ \ \ \ \ \ =\sum_{j=0}^{n}\frac{x^j}{j!}\sum_{i=j}^na_ii!\frac{n^{i-j}}{(i-j)!} =∑j=0nj!xj∑i=jnaii!(i−j)!ni−j
= ∑ j = 0 n x j j ! ∑ i = 0 n − j a i + j ( i + j ) ! n i i ! \ \ \ \ \ \ \ \ \ \ \ =\sum_{j=0}^{n}\frac{x^j}{j!}\sum_{i=0}^{n-j}a_{i+j}(i+j)!\frac{n^{i}}{i!} =∑j=0nj!xj∑i=0n−jai+j(i+j)!i!ni
令 A ( x ) = ∑ i = 0 n a i i ! x i , B ( x ) = ∑ i = 0 n n n − i ( n − i ) ! x i A(x)=\sum_{i=0}^n a_ii!x^i,B(x)=\sum_{i=0}^n\frac{n^{n-i}}{(n-i)!}x^i A(x)=∑i=0naii!xi,B(x)=∑i=0n(n−i)!nn−ixi
把 ( A ∗ B ) ( x ) (A*B)(x) (A∗B)(x)乘出来左移 n n n位即可
复杂度 T ( n ) = T ( n 2 ) + O ( n l o g n ) = O ( n l o g n ) T(n)=T(\frac n 2)+O(nlogn)=O(nlogn) T(n)=T(2n)+O(nlogn)=O(nlogn)
#include<bits/stdc++.h>
using namespace std;
#define gc getchar
inline int read(){
char ch=gc();
int res=0,f=1;
while(!isdigit(ch))f^=ch=='-',ch=gc();
while(isdigit(ch))res=(res+(res<<2)<<1)+(ch^48),ch=gc();
return f?res:-res;
}
#define re register
#define pb push_back
#define cs const
#define pii pair<int,int>
#define fi first
#define se second
#define ll long long
#define poly vector<int>
#define bg begin
cs int mod=167772161,G=3;
inline int add(int a,int b){return (a+=b)>=mod?a-mod:a;}
inline void Add(int &a,int b){(a+=b)>=mod?(a-=mod):0;}
inline int dec(int a,int b){return (a-=b)<0?a+mod:a;}
inline void Dec(int &a,int b){(a-=b)<0?(a+=mod):0;}
inline int mul(int a,int b){return 1ll*a*b>=mod?1ll*a*b%mod:a*b;}
inline void Mul(int &a,int b){a=mul(a,b);}
inline int ksm(int a,int b,int res=1){
for(;b;b>>=1,a=mul(a,a))(b&1)&&(res=mul(res,a));return res;
}
inline void chemx(int &a,int b){a<b?a=b:0;}
inline void chemn(int &a,int b){a>b?a=b:0;}
cs int N=(1<<20)|5,C=20;
poly w[C+1];
int rev[N],fac[N],ifac[N],inv[N];
inline void init(cs int len=N-5){
fac[0]=ifac[0]=inv[0]=inv[1]=1;
for(int i=1;i<=len;i++)fac[i]=mul(fac[i-1],i);
ifac[len]=ksm(fac[len],mod-2);
for(int i=len-1;i;i--)ifac[i]=mul(ifac[i+1],i+1);
for(int i=2;i<=len;i++)inv[i]=mul(mod-mod/i,inv[mod%i]);
}
inline void init_w(){
for(int i=1;i<=C;i++)w[i].resize(1<<(i-1));
int wn=ksm(G,(mod-1)/(1<<C));
w[C][0]=1;
for(int i=1;i<(1<<(C-1));i++)w[C][i]=mul(w[C][i-1],wn);
for(int i=C-1;i;i--)
for(int j=0;j<(1<<(i-1));j++)
w[i][j]=w[i+1][j<<1];
}
inline void init_rev(int lim){
for(int i=0;i<lim;i++)rev[i]=(rev[i>>1]>>1)|((i&1)*(lim>>1));
}
inline void ntt(poly &f,int lim,int kd){
for(int i=0;i<lim;i++)if(i>rev[i])swap(f[i],f[rev[i]]);
for(int a0,a1,l=1,mid=1;mid<lim;mid<<=1,l++)
for(int i=0;i<lim;i+=(mid<<1))
for(int j=0;j<mid;j++)
a0=f[i+j],a1=mul(w[l][j],f[i+j+mid]),f[i+j]=add(a0,a1),f[i+j+mid]=dec(a0,a1);
if(kd==-1){
reverse(f.bg()+1,f.bg()+lim);
for(int i=0;i<lim;i++)Mul(f[i],inv[lim]);
}
}
inline poly operator *(poly a,poly b){
int deg=a.size()+b.size()-1,lim=1;
if(deg<=64){
poly c(deg,0);
for(int i=0;i<a.size();i++)
for(int j=0;j<b.size();j++)
Add(c[i+j],mul(a[i],b[j]));
return c;
}
while(lim<deg)lim<<=1;
init_rev(lim);
a.resize(lim),ntt(a,lim,1);
b.resize(lim),ntt(b,lim,1);
for(int i=0;i<lim;i++)Mul(a[i],b[i]);
ntt(a,lim,-1),a.resize(deg);
return a;
}
inline poly calc_s(int n){
poly res;
if(n==1){res.pb(0),res.pb(1);return res;}
if(n&1){
res=calc_s(n-1);
res.resize(n+1);
for(int i=n;i;i--)res[i]=add(res[i-1],mul(res[i],n-1));
return res;
}
int mid=n>>1;
poly a=calc_s(mid),b(mid+1),c(mid+1);
for(int i=0;i<=mid;i++)c[i]=mul(a[i],fac[i]);
for(int i=0,p=1;i<=mid;i++,Mul(p,mid))b[i]=mul(p,ifac[i]);
reverse(b.bg(),b.bg()+mid+1);
c=c*b;for(int i=0;i<=mid;i++)c[i]=mul(c[i+mid],ifac[i]);
c.resize(mid+1),res=a*c;return res;
}
int n;
int main(){
n=read();
init_w(),init();
poly ans=calc_s(n);
for(int i=0;i<=n;i++)cout<<ans[i]<<" ";
}