【UOJ #310】【UNR #2】—黎明前的巧克力(FWT)

传送门


考虑说2个人选的集合不相交而且分别异或起来相等

其实就是有多少个集合划分异或和为0
对于每个巧克力构建形式幂级数 ( 1 + 2 x a i ) (1+2x^{a_i}) (1+2xai)

显然全部 F w t Fwt Fwt之后乘起来再 I F w t IFwt IFwt回去后就是 a 0 − 1 a_0-1 a01
但是直接 F w t Fwt Fwt肯定要爆炸

考虑分析一下这个东西
对于 S S S F w t Fwt Fwt化成的点值实际上是 ∑ T ∈ 2 U ( − 1 ) ∣ S ⋂ T ∣ a T \sum_{T\in 2^{U}}(-1)^{|S\bigcap T|}a_T T2U(1)STaT

1 1 1对点值的贡献一定是 1 1 1
那么每一项要么是 3 3 3要么是 − 1 -1 1

又由于 F w t Fwt Fwt的和等于和的 F w t Fwt Fwt
由于每个集合的贡献是加起来的,所以也很显然

于是把形式幂级数加起来,做一个 F w t Fwt Fwt
考虑有多少个 − 1 -1 1和多少个 3 3 3
然后就相当于解一个模意义下的一次方程
− k + 3 ( n − k ) = a s -k+3(n-k)=a_s k+3(nk)=as
解出来个数就完了

#include<bits/stdc++.h>
using namespace std;
#define gc getchar
inline int read(){
	char ch=gc();
	int res=0,f=1;
	while(!isdigit(ch))f^=ch=='-',ch=gc();
	while(isdigit(ch))res=(res+(res<<2)<<1)+(ch^48),ch=gc();
	return f?res:-res;
}
#define re register
#define pb push_back
#define cs const
#define pii pair<int,int>
#define fi first
#define se second
#define ll long long
#define poly vector<int>
#define bg begin
cs int mod=998244353,G=3;
inline int add(int a,int b){return (a+=b)>=mod?a-mod:a;}
inline void Add(int &a,int b){(a+=b)>=mod?(a-=mod):0;}
inline int dec(int a,int b){return (a-=b)<0?a+mod:a;}
inline void Dec(int &a,int b){(a-=b)<0?(a+=mod):0;}
inline int mul(int a,int b){return 1ll*a*b>=mod?1ll*a*b%mod:a*b;}
inline void Mul(int &a,int b){a=mul(a,b);}
inline int ksm(int a,int b,int res=1){
	for(;b;b>>=1,a=mul(a,a))(b&1)&&(res=mul(res,a));return res;
}
inline void chemx(int &a,int b){a<b?a=b:0;}
inline void chemn(int &a,int b){a>b?a=b:0;}
cs int N=20,M=(1<<N)|5,inv4=ksm(4,mod-2);
int n,sta,f[M],a[M],p3[M];
inline void Fwt(int *f,int lim,int kd){
	for(int mid=1,a0,a1;mid<lim;mid<<=1)
	for(int i=0;i<lim;i+=(mid<<1))
	for(int j=0;j<mid;j++)
	a0=f[i+j],a1=f[i+j+mid],f[i+j]=add(a0,a1),f[i+j+mid]=dec(a0,a1);
	if(kd==-1)
	for(int i=0,inv=ksm(lim,mod-2);i<lim;i++)Mul(f[i],inv);
}
int main(){
	n=read(),sta=1<<N;
	p3[0]=1;for(int i=1;i<M;i++)p3[i]=mul(p3[i-1],3);
	for(int i=1;i<=n;i++)a[i]=read(),f[0]++,f[a[i]]+=2;
	Fwt(f,sta,1);
	for(int i=0;i<sta;i++){
		int x=f[i],c1=mul(dec(3*n,x),inv4),c3=dec(n,c1);
		f[i]=(c1&1)?mod-p3[c3]:p3[c3];	
	}
	Fwt(f,sta,-1);
	cout<<dec(f[0],1);
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值