高斯混合模型 (Gaussian Mixture Model, GMM) 算法详解与PyTorch实现
1. 高斯混合模型 (GMM) 算法概述
高斯混合模型(Gaussian Mixture Model, GMM)是一种概率模型,用于表示由多个高斯分布组成的混合分布。GMM广泛应用于聚类、密度估计和异常检测等任务。与K-Means等硬聚类算法不同,GMM是一种软聚类算法,能够为每个样本分配属于各个簇的概率。
1.1 高斯分布
高斯分布(正态分布)是统计学中最重要的分布之一,其概率密度函数为:
p ( x ∣ μ ,