高斯混合模型 (Gaussian Mixture Model, GMM) 算法详解与PyTorch实现

高斯混合模型 (Gaussian Mixture Model, GMM) 算法详解与PyTorch实现


1. 高斯混合模型 (GMM) 算法概述

高斯混合模型(Gaussian Mixture Model, GMM)是一种概率模型,用于表示由多个高斯分布组成的混合分布。GMM广泛应用于聚类、密度估计和异常检测等任务。与K-Means等硬聚类算法不同,GMM是一种软聚类算法,能够为每个样本分配属于各个簇的概率。

1.1 高斯分布

高斯分布(正态分布)是统计学中最重要的分布之一,其概率密度函数为:
p ( x ∣ μ ,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

闲人编程

你的鼓励就是我最大的动力,谢谢

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值