欧拉函数的学习

本文探讨了欧拉函数的积性性质,并通过代码解释如何利用这一性质进行线性求解。同时,总结了欧拉函数在质数区间内的常见规律,包括数论中的不等式关系。
摘要由CSDN通过智能技术生成

在这里插入图片描述在这里插入图片描述积性函数的证明: gcd(m,n)=1,m,n没有公因子.所以:
phi(n)=n(1-p/1)(1-q/1)(1-k/1)
phi(m)=m(1-s/1)(1-r/1)…(1-j/1)
phi(nm)= n m (1-p/1) (1-q/1)(1-k/1) * ( 1-s/1)(1-r/1)…(1-j/1)。

线性求欧拉函数:

void getphi()//线性素数筛+欧拉筛.
{
    phi[1]=1;
    for(int i=2;i<=N-5;++i)
    {
        if(!is[i]){prime[++tot]=i,phi[i]=i-1;}
        for(int j=1;j<=tot;++j)
        {
            if(i*prime[j]>N) break;
            is[i*prime[j]]=1;
            if(i%prime[j]==0)
            {
                phi[i*prime[j]]=phi[i]*prime[j];
                break;
            }
            else
                phi[i*prime[j]]=phi[i]*(prime[j]-1);
        }
    }
}

代码解释:
1.第17行利用欧拉函数是积性函数。
gcd(i,prime[j])=1.(prime[j]为质数&&i%prime[j]!=0 又prime[j]=j-1。
2.第13行利用积性函数以及phi(p^k) = p^k- p^(k-1)=(p-1)* p^(k-1).(p是质数)
在这里插入图片描述
常考内容:

1.两个质数a<b之间的数x,则phi(x)<=phi(a)&&phi(x)<phi(b).(第一个等号是否可取 未知。。。) emm打表看出来的…
2.所以phi(X)>=Y,X最小是Y之后的第一个质数N。因为设Y前一个质数为M,(M,N)之间的数a,phi(a)<=phi(M)=M-1<Y,所以这之间的数a,phi(a)<Y。
又N满足phi(N)=N-1>=X。所以得证N就是满足条件的最小的数。


  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值