【数论】学习欧拉函数

参考博客:欧拉函数的使用浅谈欧拉函数

非常感谢上面两位博主花了很多心思来写这个博客,让我受益很多。

十分感谢,我现在想自己总结一遍,希望自己的总结能更好地了解这个知识点。

本博客主要是总结和学习,若大家有疑问或者错误可以在评论处提出。


1、欧拉函数是什么?

就是算出在[1,n]中gcd(x,n)=1有多少个,记作:φ(n).

例如,φ(12)=4;与12互质分别是:1,5,7,11;


2、如何算出欧拉函数?

通式为:

\LARGE {\color{Red} \phi(x)=x*\prod _{i=1}^{n}(1-\frac{1}{prime[i]})}

其中通式中,n的个数,取决于这个x的质因数的种类数,

比如:x=12,那么n=2,因为2,3是它的质因子。


3、从通式中理解欧拉函数:

预备知识:

1、求x的倍数在n内有多少个?

答案:\LARGE \left \lfloor \frac {n}{x}\right \rfloor,其实就是看看有在n内有多少倍的x即可。

2、求除x的倍数在n内有多少个?

答案:\LARGE n-\left \lfloor \frac{n}{x}\right \rfloor,就是用总数减去它的倍数即可。

3、唯一分解定理:

任何一个大于1的正整数都被多个质数的乘积表示。

如:12=2^2*3.

其中,2,3被叫做质因子


大家感受一下φ(12)的推导吧!!!!

\LARGE \phi(12)=12*(1-\frac{1}{2})*(1-\frac{1}{3})

首先是有12个数字:

{1,2,3,4,5,6,7,8,9,10,11,12}

然后经过×(1-1/2)后得到:12*1/2=6个数字。

{1,3,5,7,9,11}

然后经过×(1-1/3)后得到:6*2/3=4个数字。

{1, 5, 7 ,11}

这几个数字就是与12互质的。

经过一次实现之后,大家应该更加清楚这个过程了吧。

 


小细节

但是认真仔细的你有没有发现一个小细节?????

就是第一步,×(1-1/2)还是能理解的,因为这样就可以去掉2的所有倍数。

但是下一步就出现问题了?????

这个问题就是为什么是在6个数的基础上剔除3的倍数呢???这样是否合法呢?

含义大家都懂,其实就是剔除3的所有倍数呗,但是这样做是否讲得通道理呢?


大家需要了解一下:积性函数

若当m与n互质时,f(m∗n)=f(m)∗f(n),那么f是积性函数。

若对任意正整数,都有f(m*n)=f(m)*f(n)成立,则f是完全积性函数。
 

其实刚才这个小细节,理论上其实行不通的,因为这个仅仅是我们对通式的一个理解罢了。我们应该从积性函数来出发解决,我们把任何一个数,唯一分解之后得到是几个质因数的乘积。

\large \phi(12)=\phi(2^{2})*\phi(3) ,中间需要用到:\large \phi(4)=4*(1-\frac{1}{2})\large \phi(3)=3*(1-\frac{1}{3})

合并起来得到:

\bg_white \large \phi(12)=\phi(4)*\phi(3)=[4*(1-\frac{1}{2})][3*(1-\frac{1}{3})]

\large \phi(12)=12*(1-\frac{1}{2})*(1-\frac{1}{3})


4、欧拉函数的性质:

  • 对于φ(p)=p-1,当且仅当p为素数。

  • 当p为质数时,n=p^{k},则\phi(n)=p^{k}-p^{k-1}

  • 欧拉函数是积性函数,但不是完全积性函数。若m,n互质,则φ(m∗n)=φ(m)∗φ(n) 。
    特殊地,当m=2,n为奇数时,φ(2*n)=φ(n)。

  • 当n>2时,φ(n)为偶数

  • 当x∈[1,n],且满足gcd(x,n)=1,{\color{Red} \sum _{i=1}^{\phi(n)}x_{i}=\frac{n*\phi(n)}{2}}

  • n的所有因数的欧拉值相加等于n,{\color{Red} n=\sum\phi(d), \ d |n}

以上性质都是@liuzibujian   博客上提供的。


5、欧拉函数相关性质证明:

 

1、对于φ(p)=p-1,当且仅当p为素数。

【证明过程】:

∵p为素数    ∴因数只有1和它本身

又∵在[1,n]内,gcd(1,n)=1

∴φ(p)=p-1   


2、当p为质数时,\large n=p^{k},则\large \phi(n)=p^{k}-p^{k-1}

其实这个证明我之前看吉老师的NOIP的教学就有提到了。也是一句话带过,但是后来发现恰恰就是那么一句话就把这个性质给说明白了,不得不佩服吉老师。

【证明过程】:

∵p是质数,也就是说n中没有其他的质因子了。

∴其实与它互质的只有p的倍数。

∵总数为:\large p^{k}

又∵在n内p的倍数有:\large \frac{n}{p}=\frac{p^k}{p}=p^{k-1}

\large \phi(n)=p^k-p^{k-1}=(p-1)*p^{k-1}


3、欧拉函数是积性函数,但不是完全积性函数。

若m,n互质,则φ(m∗n)=φ(m)∗φ(n) 。
特殊地,当m=2,n为奇数时,φ(2*n)=φ(n)。

其实这个没有什么好解释的,大家知道如果是完全积性函数就是:

 

积性函数:对于任意互质的整数a和b有性质f(ab)=f(a)f(b)的数论函数

完全积性函数:对于任意整数a和b有性质f(ab)=f(a)f(b)的数论函数

 

以上摘自百度百科“积性函数


4、当n>2时,φ(n)为偶数

两次讨论即可:

1、当n为质数时

      当n为质数时,n必定是奇数。 

      那么φ(n)=n-1。n-1必为偶数

2、当n为偶数时

      (1)、n的质因数只有2

      (2)、n的质因数不仅只有2,或者没有2

(1)、n的质因数只有2

如果质因数只有2,即4,8,16等

根据性质2:φ(n)=(p-1)*p^(k-1),其中p-1=1,而大于2,那么k>1,

∴φ(n)=1×2^(t)必定为偶数。

 

(2)、n的质因数不仅只有2,或者没有2。

其实根据无论从积性函数性质2通式展开都很好说明。

只要有一个质因数不为2的质因子,如3,5之类的。

必定会产生p-1

如通式中,\large \phi (n)=n*(1-\frac{1}{p})*\cdots

即可变成:\large n*(1-\frac{1}{p})=n*(\frac{p-1}{p}),其中有p-1出现,

那么说明这个φ(n)必定为偶数。


5、当x∈[1,n],且满足gcd(x,n)=1,{\color{Red} \sum _{i=1}^{\phi(n)}x_{i}=\frac{n*\phi(n)}{2}}

【证明过程】:

gcd(x,n)=gcd(x,n-x)=1    (更相减损法)

∴[1,n]中,所有与n互质的数x,必将都有n-x与n互质。

而且根据性质4可得知必须是偶数项。

∴把成对出现的<x,n-x>累加得到,x+(n-x)=n,共有\large \frac{\phi(n)}{2}

\sum _{i=1}^{\phi(n)}x_{i}=\frac{n*\phi(n)}{2}


6、n的所有因数的欧拉值相加等于n,{\color{Red} n=\sum\phi(d), \ d |n}

不得不说这个证明是还是借鉴(抄袭),我真的不知道这个命题是怎样证明的。

以12为例。12的因子有1,2,3,4,6,12。把与这些数互质的数列出来:
\\1:1\\ 2:1\\ 3:1 \ , 2\\ 4:1 \ , 3\\ 6:1 \ , 5\\ 12 :1 \ , 5 \ ,7 \ ,11\\
不妨把这些数作为分母,把与这些数互质的数作为分子,写成分数形式:

\\1:\frac{1}{1}\\\\ 2:\frac{1}{2}\\\\ 3:\frac{1}{3} \ , \frac{2}{3}\\\\ 4:\frac{1}{4} \ , \frac{3}{4}\\\\ 6:\frac{1}{6} \ , \frac{5}{6}\\\\ 12 :\frac{1}{12} \ , \frac{5}{12} \ ,\frac{7}{12} \ ,\frac{11}{12}\\
显然,每一行的数的个数就是该行的分母的欧拉函数值。倘若把这些数都改成以12为分母的数:

\\1:\frac{12}{12}\\\\ 2:\frac{6}{12}\\\\ 3:\frac{4}{12} \ , \frac{8}{12}\\\\ 4:\frac{3}{12} \ , \frac{9}{12}\\\\ 6:\frac{2}{12} \ , \frac{10}{12}\\\\ 12 :\frac{1}{12} \ , \frac{5}{12} \ ,\frac{7}{12} \ ,\frac{11}{12}\\
可以发现,这些数是以12为分母,1~12为分子的所有数,所以个数为12个。所以与12互质的数的欧拉函数值之和就是12。这样,命题大概就被证明了吧。
 


 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值