题目:
有一个二维矩阵 grid ,每个位置要么是陆地(记号为 0 )要么是水域(记号为 1 )。
我们从一块陆地出发,每次可以往上下左右 4 个方向相邻区域走,能走到的所有陆地区域,我们将其称为一座「岛屿」。
如果一座岛屿 完全 由水域包围,即陆地边缘上下左右所有相邻区域都是水域,那么我们将其称为 「封闭岛屿」
请返回封闭岛屿的数目。
输入:grid = [[1,1,1,1,1,1,1,0],[1,0,0,0,0,1,1,0],[1,0,1,0,1,1,1,0],[1,0,0,0,0,1,0,1],[1,1,1,1,1,1,1,0]]
输出:2
解释:
灰色区域的岛屿是封闭岛屿,因为这座岛屿完全被水域包围(即被 1 区域包围)。
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/number-of-closed-islands
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
这里要注意只要陆地被水包围就行 所以 图中哪大块被包围的也算!
思路:
既然从当前位置向外扩展只要查找到外围能组成一圈被水域包围就行,
所以可以采用BFS
BFS:从根节点从下延伸知道此路不通才会回溯换下一条路继续走,这样像图中一大块的区域就可以找到;
具体代码实现:
class Solution {
public int closedIsland(int[][] grid) {
int ret = 0;
//遍历每一个结点
for(int i =0;i < grid.length; i++ ){
for(int j =0;j < grid[0].length; j++){
//如果是陆地就通过bfs向外搜索
if(grid[i][j]==0){
ret +=dfs(grid,i,j);
}
}
}
return ret;
}
public int dfs(int[][] grid,int r,int c){
//向外探索知道出界,则认为没有探索到
if(r < 0||r >= grid.length||c < 0 ||c >=grid[0].length){
return 0;
}
//如果发现一处为水域则回溯继续探索别的方向水域
if(grid[r][c]==1){
return 1;
}
//如果函数走到这里说明 探索到的这块地方为陆地 , 将陆地标记为1 设为已经探索过的地方 复制每次 ---将陆地连成岛
grid[r][c]=1;
//如果探索的该位置不是水域就得继续探索知道到达边界或找到
//ret =1 用来与 0比较 1为找到水域 0 为出界,该方向上没有找到水域
int ret =1;
int ir[] = {1,-1,0,0};
int ic[] = {0,0,1,-1};
for(int m = 0 ; m <4 ; m++){
//有一处为0 则说明 陆地的四周有地方不为水域
ret = Math.min(ret,dfs(grid,r+ir[m],c+ic[m]));
}
//如果全为水域 则ret =1 ,有一处探索到出界都找不到水域 ret = 0;
return ret;
}
}