【刷题】数学知识——约数:最大公约数【辗转相除/欧几里得算法】

文章目录

辗转相除

在这里插入图片描述

首先要知道:如果 d d d能整除 a a a d d d也能整数 b b b,即 d d d a , b a,b a,b的公因数时, d d d能整除 a x + b y ax+by ax+by,其中 x x x y y y是整数。
这是显然的,令 a = k 1 d a=k_1d a=k1d b = k 2 d b=k_2d b=k2d,则 ( a x + b y ) / d = ( k 1 d x + k 2 d y ) / d = k 1 x + k 2 y (ax+by)/d=(k_1dx+k_2dy)/d=k_1x+k_2y (ax+by)/d=(k1dx+k2dy)/d=k1x+k2y,仍然是整数。

上面的结论可简写成:若 d ∣ a d|a da d ∣ b d|b db , 则 d ∣ ( a x + b y ) d|(ax+by) d(ax+by)
a % b a\%b a%b可以写成 a − ⌊ a / b ⌋ ∗ b = a − c ∗ b a-\lfloor a/b \rfloor * b=a-c*b aa/bb=acb,此时 x = 1 , y = − c x=1,y=-c x=1,y=c,所以 d d d能整除 a % b a\%b a%b

下面证明 a a a b b b的最大公约数 等于 b b b a % b a\%b a%b的最大公约数

1、 a a a b b b的所有公约数 都是 b b b a % b a\%b a%b的公约数
不妨设 a a a b b b的公约数是 d d d
1.1、显然任意 d d d都是 b b b的约数,即 d ∣ b d|b db
1.2、由上面我们知道 d ∣ ( a % b ) d|(a\%b) d(a%b),故任意 d d d都是 a % b a\%b a%b的约数。
所以任意 d d d既是 b b b的约数也是 a % b a\%b a%b的约数,是二者的公约数

2、 b b b a % b a\%b a%b的所有公约数 都是 a a a b b b的所有公约数
不妨设 b b b a % b a\%b a%b的公约数是 d d d
2.1、显然任意 d d d都是 b b b的约数,即 d ∣ b d|b db
2.2、 d ∣ a % b d|a\%b da%b,有 d ∣ ( a − c ∗ b ) d|(a-c*b) d(acb),又因为 d ∣ b d|b db,所以 a − c ∗ b a-c*b acb加上 c ∗ b c*b cb仍然能被 d d d整除,即 d ∣ ( a − c ∗ b + c ∗ b ) d|(a-c*b+c*b) d(acb+cb),就得到了 d ∣ a d|a da
所以任意 d d d既是 b b b的约数也是 a a a的约数,是二者的公约数

#include <iostream>
using namespace std;
int n, a, b;

int gcd(int a, int b) {
	// 如果b不是0,则返回b和a%b的最大公约数;如果b是0则返回a 
    return b ? gcd(b, a % b) : a;  
    /*if(!b) {
    	return a;
    }
    else {
		return gcd(b, a % b);
	}*/
}

int main() {
    scanf("%d", &n);
    while(n -- ) {
        scanf("%d%d", &a, &b);
        printf("%d\n", gcd(a, b));
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值