由于bfs的特性,当一个图所有边权都相同时(此时队列可看作Dijkstra的优先队列),从起点开始搜索时,一旦搜到终点,搜索路径就是最短路径。
记录路径可用一个pre数组,新节点进队时记录该节点的pre节点是队头元素。
tips:要想打印起点到终点的路径,可以从终点向起点搜索,这样pre数组记录的方向就是起点向终点。
#include <iostream>
#include <cstring>
#define x first
#define y second
using namespace std;
typedef pair<int, int> PII;
int n;
int m[1005][1005];
PII q[1000005];
PII pre[1005][1005];
const int dx[4] = {1, 0, -1, 0}, dy[4] = {0, 1, 0, -1};
void bfs(int a, int b) {
int head = 0, tail = 0;
q[0] = {a, b};
memset(pre, -1, sizeof(pre));
pre[a][b] = {a, b};
while(head <= tail) {
PII t = q[head ++ ];
for (int i = 0; i < 4; i ++ ) {
int sx = t.x + dx[i], sy = t.y + dy[i];
if (sx < 0 || sy < 0 || sx >= n || sy >= n) continue;
if (m[sx][sy] == 1 || pre[sx][sy].x != -1) continue;
pre[sx][sy] = t;
q[ ++ tail] = {sx, sy};
if (sx == 0 && sy == 0)
return ;
}
}
return ;
}
int main() {
scanf("%d", &n);
for (int i = 0; i < n; i ++ ) {
for (int j = 0; j < n; j ++ )
scanf("%d", &m[i][j]);
}
bfs(n - 1, n - 1); // 从终点往起点搜,pre就可以记录从起点到终点的路径
PII end(0, 0);
while(true) {
printf("%d %d\n", end.x, end.y);
if (end.x == n - 1 && end.y == n - 1) break;
end = pre[end.x][end.y];
}
return 0;
}