java
- JVM的X参数(了解)
- -Xint: 解释执行
- -Xcomp: 第一次使用就编译成本地代码
- -Xmixed: 混合模式
- XX参数
注:查看是否使用了参数且查看参数详情:jinfo -flag 参数名 进程号
例:jinfo -flag MetaspaceSize 4488 (查看进程4488的MetaspaceSize)- Boolean类型:-xx:+或者-某个属性(+表示开启,-表示关闭)
- 是否打印GC收集细节:-XX:-PrintGCDetails(-XX:+PrintGCDetails)
- 是否使用串行垃圾回收器:-XX:-UseSerialGC(-XX:+UseSerialGC)
- KV设值类型:-xx:属性key=属性值value
- -XX:MetaspaceSize=128m(元空间)
- -XX:MaxTenuringThreshold=15(这个参数用于控制对象能经历多少次Minor GC才能晋升到旧生代,默认值15)
- Boolean类型:-xx:+或者-某个属性(+表示开启,-表示关闭)
- -Xms和-Xmx
- -Xms:等价于-XX:InitialHeapSize(初始堆内存)
- -Xmx:等价于-XX:MaxHeapSize(最大堆内存)
- 查看JVM默认值
- -XX:+PrintFlagsInitial:主要查看初始默认
- 公式:java -XX:+PrintFlagsInitial -version
- -XX:+PrintFlagsFinal:主要查看修改更新
- 公式:java -XX:+PrintFlagsFinal -version
- -XX:+PrintFlagsInitial:主要查看初始默认
- 常用参数
- -Xms: 初始大小内存,默认为物理内存1/64
- -Xmx: 最大分配内存,默认为物理内存1/4
- -Xss: 设置单个线程栈的大小,一般默认为512k~1024k
- -Xmn: 设置年轻代大小
- -XX:MetaspaceSize: 设置元空间大小。元空间不在虚拟机中,而是使用本地内存。因此,默认情况下,元空间的大小仅受本地内存限制
- -XX:+PrintGCDetails: 输出详细GC收集日志信息
- -XX:SurvivorRatio: 设置新生代中eden和s0/s1空间的比例
- -XX:NewRatio: 配置年轻代与老年代在堆结构的占比。例如:-XX:NewRatio=2新生代占1,老年代占2
- -XX:MaxTenuringThreshold: 设置垃圾最大年龄
算法
- 209.长度最小的子数组
给定一个含有 n 个正整数的数组和一个正整数 s ,找出该数组中满足其和 ≥ s 的长度最小的 连续 子数组,并返回其长度。如果不存在符合条件的子数组,返回 0。
示例:
输入:s = 7, nums = [2,3,1,2,4,3] 输出:2 解释:子数组 [4,3] 是该条件下的长度最小的子数组。
- 方法一:暴力解法(双循环)(时间复杂度:O(n2))
- 第一层从最左边开始循环遍历,第二层从第一层开始的位置遍历,记录每一次外层循环的元素之和
- 如果元素之和>=target的话,则记录外层循环到内层循环的长度
- 每次选取最小长度的,
- 遍历完成之后,如果结果最大值没有被重新赋值则为0,否则就是那个重新赋值的最小长度值
public int minSubArrayLen(int target, int[] nums) {
int res = Integer.MAX_VALUE;
int len;
int sum;
for (int i = 0; i < nums.length; i++) {
sum = 0;
for (int j = i; j < nums.length; j++) {
sum += nums[j];
if (sum >= target) {
len = j - i + 1;
res = Math.min(len, res);
break;
}
}
}
return res == Integer.MAX_VALUE ? 0 : res;
}
- 方法二:滑动窗口。(时间复杂度:O(n))
- 所谓滑动窗口:就是不断的调节子序列的起始位置和终止位置,从而得出我们想要的结果。
- 实现滑动窗口,主要确定如下三点:
- 窗口内是什么?满足其和>=s的长度最小的连续子数组
- 如何移动窗口的起始位置?如果当前窗口的值大于s了,窗口就要向前移动了(也就是该缩小了)
- 如何移动窗口的结束位置?窗口的结束位置就是遍历数组的指针,窗口的起始位置设置为数组的起始位置
public int minSubArrayLen(int target, int[] nums) {
int res = Integer.MAX_VALUE;
int len;
int sum = 0;
int i = 0;// 滑动窗口起始位置
for (int j = 0; j < nums.length; j++) {
sum += nums[j];
while (sum >= target) {
len = j - i + 1;
res = Math.min(res, len);
// 缩小窗口
sum -= nums[i++];
}
}
return res == Integer.MAX_VALUE ? 0 : res;
}
不要以为for里放一个while就以为是 O ( n 2 ) O(n^2) O(n2)啊, 主要是看每一个元素被操作的次数,每个元素在滑动窗后进来操作一次,出去操作一次,每个元素都是被操作两次,所以时间复杂度是 2 × n 也就是 O ( n ) O(n) O(n)。