实战| 轻松实现仰卧起坐检测与计数,手把手教学【附完整源码与详细讲解】

《博主简介》

小伙伴们好,我是阿旭。专注于人工智能、AIGC、python、计算机视觉相关分享研究。
更多学习资源,可关注公-仲-hao:【阿旭算法与机器学习】,共同学习交流~
👍感谢小伙伴们点赞、关注!

《------往期经典推荐------》

一、AI应用软件开发实战专栏【链接】

项目名称项目名称
1.【人脸识别与管理系统开发2.【车牌识别与自动收费管理系统开发
3.【手势识别系统开发4.【人脸面部活体检测系统开发
5.【图片风格快速迁移软件开发6.【人脸表表情识别系统
7.【YOLOv8多目标识别与自动标注软件开发8.【基于YOLOv8深度学习的行人跌倒检测系统
9.【基于YOLOv8深度学习的PCB板缺陷检测系统10.【基于YOLOv8深度学习的生活垃圾分类目标检测系统
11.【基于YOLOv8深度学习的安全帽目标检测系统12.【基于YOLOv8深度学习的120种犬类检测与识别系统
13.【基于YOLOv8深度学习的路面坑洞检测系统14.【基于YOLOv8深度学习的火焰烟雾检测系统
15.【基于YOLOv8深度学习的钢材表面缺陷检测系统16.【基于YOLOv8深度学习的舰船目标分类检测系统
17.【基于YOLOv8深度学习的西红柿成熟度检测系统18.【基于YOLOv8深度学习的血细胞检测与计数系统
19.【基于YOLOv8深度学习的吸烟/抽烟行为检测系统20.【基于YOLOv8深度学习的水稻害虫检测与识别系统
21.【基于YOLOv8深度学习的高精度车辆行人检测与计数系统22.【基于YOLOv8深度学习的路面标志线检测与识别系统
23.【基于YOLOv8深度学习的智能小麦害虫检测识别系统24.【基于YOLOv8深度学习的智能玉米害虫检测识别系统
25.【基于YOLOv8深度学习的200种鸟类智能检测与识别系统26.【基于YOLOv8深度学习的45种交通标志智能检测与识别系统
27.【基于YOLOv8深度学习的人脸面部表情识别系统28.【基于YOLOv8深度学习的苹果叶片病害智能诊断系统
29.【基于YOLOv8深度学习的智能肺炎诊断系统30.【基于YOLOv8深度学习的葡萄簇目标检测系统
31.【基于YOLOv8深度学习的100种中草药智能识别系统32.【基于YOLOv8深度学习的102种花卉智能识别系统
33.【基于YOLOv8深度学习的100种蝴蝶智能识别系统34.【基于YOLOv8深度学习的水稻叶片病害智能诊断系统
35.【基于YOLOv8与ByteTrack的车辆行人多目标检测与追踪系统36.【基于YOLOv8深度学习的智能草莓病害检测与分割系统
37.【基于YOLOv8深度学习的复杂场景下船舶目标检测系统38.【基于YOLOv8深度学习的农作物幼苗与杂草检测系统
39.【基于YOLOv8深度学习的智能道路裂缝检测与分析系统40.【基于YOLOv8深度学习的葡萄病害智能诊断与防治系统
41.【基于YOLOv8深度学习的遥感地理空间物体检测系统42.【基于YOLOv8深度学习的无人机视角地面物体检测系统
43.【基于YOLOv8深度学习的木薯病害智能诊断与防治系统44.【基于YOLOv8深度学习的野外火焰烟雾检测系统
45.【基于YOLOv8深度学习的脑肿瘤智能检测系统46.【基于YOLOv8深度学习的玉米叶片病害智能诊断与防治系统
47.【基于YOLOv8深度学习的橙子病害智能诊断与防治系统48.【车辆检测追踪与流量计数系统
49.【行人检测追踪与双向流量计数系统50.【基于YOLOv8深度学习的反光衣检测与预警系统
51.【危险区域人员闯入检测与报警系统52.【高压输电线绝缘子缺陷智能检测系统

二、机器学习实战专栏【链接】,已更新31期,欢迎关注,持续更新中~~
三、深度学习【Pytorch】专栏【链接】
四、【Stable Diffusion绘画系列】专栏【链接】
五、YOLOv8改进专栏【链接】持续更新中~~
六、YOLO性能对比专栏【链接】,持续更新中~

引言

本文主要是基于OpenCV+MediaPipe实现了视频与摄像头中人体仰卧起坐检测与实时计数。附完整源码与实现步骤讲解,供小伙伴们学习。感谢大家的点赞关注,更多干活内容持续更新~

实现效果

在这里插入图片描述

实现步骤说明

引入所需库

首先,我们导入必要的库来处理视频流、人体姿态估计和基本数学运算。

import cv2  # OpenCV库用于视频处理
import mediapipe as mp  # Mediapipe库用于人体姿态检测
import numpy as np  # NumPy库用于数学计算

计算角度函数

定义一个函数来计算三个关键点之间的角度,用于判断仰卧起坐动作的完成状态。

def calculate_angle(a, b, c):
    # 将输入的坐标转换为NumPy数组
    a, b, c = np.array(a), np.array(b), np.array(c)
    
    # 使用arctan2计算角度,并转换为度数
    radians = np.arctan2(c[1]-b[1], c[0]-b[0]) - np.arctan2(a[1]-b[1], a[0]-b[0])
    angle = np.abs(radians * 180.0 / np.pi)
    
    # 确保角度在0到180之间
    if angle > 180.0:
        angle = 360 - angle
    
    return angle

主程序逻辑

接下来是程序的主要部分,包括初始化视频捕获、姿态估计设置、循环读取视频帧并分析姿态数据以计算仰卧起坐次数。

  1. 初始化姿态估计模块

    mp_pose = mp.solutions.pose
    mp_drawing = mp.solutions.drawing_utils
    
  2. 打开视频文件

    cap = cv2.VideoCapture("demo.mp4")
    
  3. 初始化计数器和阶段标记

    counter = 0  # 计数器初始化为0
    stage = None  # 动作阶段("down" 或 "up")
    
  4. 姿态检测核心代码

    while cap.isOpened():
        # 读取视频的下一帧
        ret, frame = cap.read()
        
        # 将BGR图像转换为RGB,因为MediaPipe需要RGB图像
        image = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
        
        # 设置图像为不可写,以提高处理效率
        image.flags.writeable = False
        
        # 使用MediaPipe Pose模型处理图像,检测姿态
        results = pose.process(image)
        
        # 处理完后再设置图像为可写,以便后续绘图操作
        image.flags.writeable = True
        
        # 转换回BGR色彩空间,以便OpenCV显示
        image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
        
        # 尝试性执行,以防姿态数据未成功检测
        try:
            landmarks = results.pose_landmarks.landmark
            
            # 提取关键点坐标
            hip = [landmarks[mp_pose.PoseLandmark.LEFT_HIP.value].x, landmarks[mp_pose.PoseLandmark.LEFT_HIP.value].y]
            shoulder = [landmarks[mp_pose.PoseLandmark.LEFT_SHOULDER.value].x, landmarks[mp_pose.PoseLandmark.LEFT_SHOULDER.value].y]
            knee = [landmarks[mp_pose.PoseLandmark.LEFT_KNEE.value].x, landmarks[mp_pose.PoseLandmark.LEFT_KNEE.value].y]
            
            # 计算角度
            angle = calculate_angle(shoulder, hip, knee)
            
            # 根据角度变化判断动作阶段并计数
            if angle > 100:  # 下降阶段(腿部下降)
                stage = "down"
            elif angle < 50 and stage == 'down':  # 上升阶段(腿部抬起,且之前已记录下降)
                stage = "up"
                counter += 1  # 增加计数
                print("Sit-up count: ", counter)  # 打印当前计数
                
        except AttributeError:
            # 如果没有检测到姿态,忽略此次迭代
            pass
        
        # 在图像上显示计数
        cv2.putText(image, "Counter: " + str(counter), (50, 50), 
                    cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 0, 0), 2, cv2.LINE_AA)
        
        # 绘制姿态关键点和连线
        mp_drawing.draw_landmarks(image, results.pose_landmarks, mp_pose.POSE_CONNECTIONS)
        
        # 显示处理后的图像
        cv2.imshow('Sit-Up Counter', image)
        
        # 按'q'键退出
        if cv2.waitKey(10) & 0xFF == ord('q'):
            break
    
    • 读取与转换图像:每一帧视频图像被读取后,首先由BGR格式转换为RGB格式,这是由于MediaPipe Pose模型的要求。
    • 姿态检测:调用pose.process(image)来处理图像,检测其中的人体姿态。这一步会返回姿态检测的结果,包括身体各部位的关键点坐标。
    • 关键点提取与角度计算:从姿态检测的结果中提取左髋、左肩和左膝的坐标,并利用calculate_angle函数计算这三个点形成的夹角。这个角度是判断仰卧起坐动作完成情况的重要依据。
    • 计数逻辑
      • 当角度超过100度时,认为是“下蹲”阶段,标记stage为"down"。
      • 若角度小于50度,并且之前记录了“下蹲”阶段(即stage为"down"),则认为完成了一次完整的仰卧起坐动作,counter`增加1,并打印当前的计数。
    • 异常处理:当没有检测到有效的姿态信息时(例如,人体部分或全部未出现在画面中),通过捕获AttributeError避免程序崩溃。
    • 图像展示:在每帧图像上绘制计数信息和姿态关键点及连线,最后通过OpenCV的imshow函数实时显示处理结果。
    • 退出循环:用户可以通过按下’q’键随时终止循环,结束程序。
  5. 清理工作:释放视频资源,关闭所有OpenCV窗口。

通过上述步骤,该程序实现了基于视频的人体姿态识别,进而自动计数仰卧起坐的完成次数。这是一种结合计算机视觉和运动分析技术的实用应用,适合健身监测和训练辅助场景。

免费获取方式

本文介绍的所有源码与测试视频均已上传,通过以下方式即可获取,更多精彩内容持续更新中~

关注文末名片G-Z-H:【阿旭算法与机器学习】,发送【开源】即可获取下载方式

在这里插入图片描述


好了,这篇文章就介绍到这里,喜欢的小伙伴感谢赞关注,更多精彩内容持续更新~~
更多干货内容,可关注文末G-Z-H: 【阿旭算法与机器学习】,欢迎共同学习交流

【资源说明】 Python开发基于BlazePose+KNN实现人体姿态健身计数源码(支持俯卧撑、深蹲 、引体向上、仰卧起坐).zip 基于BlazePose+KNN实现人体姿态健身计数 项目描述: 实现基于mediapipe的人体姿态识别的AI健身自动计数功能 支持健身动作:1、俯卧撑 2、深蹲 3、引体向上 4、仰卧起坐 如何训练新的健身动作模型? 1、修改mian函数 2、首先在fitness_pose_images_in的文件夹下存储对应健身的初态动作末态动作图像 3、修改videoprocess.py文件中的代码,flag模式选择部分,注意class_name必须fitness_pose_images_in文件夹下的文件名字保持一致 4、修改videoprocess.py文件中的代码,flag模式选择部分,注意class_name必须fitness_pose_images_in文件夹下的文件名字保持一致 5、修改trainingsetprocess.py文件中的代码,flag模式选择部分,注意 文件名 必须fitness_pose_images_in文件夹下的文件名字保持一致 【备注】 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 2、本项目适合计算机相关专业(如计科、人工智能、通信工程、自动化、电子信息等)的在校学生、老师或者企业员工下载使用,也适合小白学习进阶,当然也可作为毕设项目、课程设计、作业、项目初期立项演示等。 3、如果基础还行,也可在此代码基础上进行修改,以实现其他功能,也可直接用于毕设、课设、作业等。 欢迎下载,沟通交流,互相学习,共同进步!
【资源说明】 智慧体育基于mediapipe+python开发的引体向上计数得分系统源码(毕设项目).zip智慧体育基于mediapipe+python开发的引体向上计数得分系统源码(毕设项目).zip智慧体育基于mediapipe+python开发的引体向上计数得分系统源码(毕设项目).zip智慧体育基于mediapipe+python开发的引体向上计数得分系统源码(毕设项目).zip智慧体育基于mediapipe+python开发的引体向上计数得分系统源码(毕设项目).zip智慧体育基于mediapipe+python开发的引体向上计数得分系统源码(毕设项目).zip 智慧体育基于mediapipe+python开发的引体向上计数得分系统源码(毕设项目).zip智慧体育基于mediapipe+python开发的引体向上计数得分系统源码(毕设项目).zip智慧体育基于mediapipe+python开发的引体向上计数得分系统源码(毕设项目).zip 【备注】 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 2、本项目适合计算机相关专业(如计科、人工智能、通信工程、自动化、电子信息等)的在校学生、老师或者企业员工下载使用,也适合小白学习进阶,当然也可作为毕设项目、课程设计、作业、项目初期立项演示等。 3、如果基础还行,也可在此代码基础上进行修改,以实现其他功能,也可直接用于毕设、课设、作业等。 欢迎下载,沟通交流,互相学习,共同进步!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

阿_旭

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值