基于YOLOv8深度学习的舰船目标分类检测系统【python源码+Pyqt5界面+数据集+训练代码】目标检测、深度学习实战

《博主简介》

小伙伴们好,我是阿旭。专注于人工智能、AIGC、python、计算机视觉相关分享研究。
更多学习资源,可关注公-仲-hao:【阿旭算法与机器学习】,共同学习交流~
👍感谢小伙伴们点赞、关注!

《------往期经典推荐------》

一、AI应用软件开发实战专栏【链接】

项目名称项目名称
1.【人脸识别与管理系统开发2.【车牌识别与自动收费管理系统开发
3.【手势识别系统开发4.【人脸面部活体检测系统开发
5.【图片风格快速迁移软件开发6.【人脸表表情识别系统
7.【YOLOv8多目标识别与自动标注软件开发8.【基于YOLOv8深度学习的行人跌倒检测系统
9.【基于YOLOv8深度学习的PCB板缺陷检测系统10.【基于YOLOv8深度学习的生活垃圾分类目标检测系统
11.【基于YOLOv8深度学习的安全帽目标检测系统12.【基于YOLOv8深度学习的120种犬类检测与识别系统
13.【基于YOLOv8深度学习的路面坑洞检测系统14.【基于YOLOv8深度学习的火焰烟雾检测系统
15.【基于YOLOv8深度学习的钢材表面缺陷检测系统16.【基于YOLOv8深度学习的人脸面部口罩检测系统

二、机器学习实战专栏【链接】,已更新31期,欢迎关注,持续更新中~~
三、深度学习【Pytorch】专栏【链接】
四、【Stable Diffusion绘画系列】专栏【链接】

《------正文------》

基本功能演示

在这里插入图片描述

摘要:舰船分类检测 在航运和海洋监测领域有着重要的应用价值。通过使用YOLOv8等先进的深度学习模型,该系统可以准确地识别和分类不同类型的舰船,具有良好的实用性和广泛的应用前景。本文基于YOLOv8深度学习框架,通过8476张图片,训练了一个进行舰船目标分类的检测模型,可识别10种常见的舰船类型准确率高达99%。并基于此模型开发了一款带UI界面的舰船分类检测识别系统,可用于实时检测场景中的10种舰船类型,更方便进行功能的展示。该系统是基于pythonPyQT5开发的,支持图片视频以及摄像头进行目标检测,并保存检测结果。本文提供了完整的Python代码和使用教程,给感兴趣的小伙伴参考学习,完整的代码资源文件获取方式见文末

点击跳转至文末《完整相关文件及源码》获取


前言

舰船分类检测 在航运和海洋监测领域有着重要的应用价值。通过使用YOLOv8等先进的深度学习模型,该系统可以准确地识别和分类不同类型的舰船,具有良好的实用性和广泛的应用前景。

首先,舰船分类检测系统在海上交通管理和安全监控中具有重要意义。通过对海上船只进行分类与识别,可以实现对航行中的不同类型舰船的监控和管控,提高海上交通管理的效率和安全性。同时,系统还能及时发现异常船只,如非法船只和非法钓鱼船等,对于保障海上安全和维护海上秩序起到至关重要的作用。
其次,舰船分类检测系统也可应用于海洋环境监测和海洋科研领域。通过对海上舰船的分类检测,可以为海洋资源开发、环境保护、海洋生态研究等提供支持和数据基础。例如,可以利用系统对渔船、货船、油船等不同类型舰船的识别,进行海上资源利用的监测和评估,为海洋环境保护和管理提供科学依据。
此外,舰船分类检测系统还可用于海事救助和应急响应领域。系统能够在海上事故和灾害事件中,通过及时识别和分类不同类型舰船,提供重要的数据支持和信息反馈,为海上救援行动和应急响应提供及时准确的参考。
综上所述,舰船分类检测系统在海上交通管理、海洋环境监测、海洋科研和海事救助等领域具有广泛的应用场景,为提升海上管理和安全、完善海洋保护与生态环境管理,具有重要的实用价值和社会意义。

博主通过搜集不同类型舰船的相关数据图片,根据YOLOv8的目标检测技术,基于python与Pyqt5开发了一款界面简洁的舰船目标分类检测系统,可支持图片、视频以及摄像头检测,同时可以将图片或者视频检测结果进行保存

软件初始界面如下图所示:
在这里插入图片描述

检测结果界面如下:
在这里插入图片描述

一、软件核心功能介绍及效果演示

软件主要功能

1. 可进行10种不同类型舰船分类检测,分别为['航空母舰', '散货船', '汽车运输船', '集装箱船', '游轮', '驱逐舰', '休闲船', '帆船', '潜艇', '拖船']
2. 支持图片、视频及摄像头进行检测,同时支持图片的批量检测
3. 界面可实时显示目标位置目标总数置信度用时等信息;
4. 支持图片或者视频检测结果保存

(1)图片检测演示

点击图片图标,选择需要检测的图片,或者点击文件夹图标,选择需要批量检测图片所在的文件夹,操作演示如下:
点击目标下拉框后,可以选定指定目标的结果信息进行显示。 点击保存按钮,会对视频检测结果进行保存,存储路径为:save_data目录下。
注:1.右侧目标位置默认显示置信度最大一个目标位置。所有检测结果均在左下方表格中显示。
单个图片检测操作如下:
在这里插入图片描述

批量图片检测操作如下:
在这里插入图片描述

(2)视频检测演示

点击视频图标,打开选择需要检测的视频,就会自动显示检测结果。点击保存按钮,会对视频检测结果进行保存,存储路径为:save_data目录下。
在这里插入图片描述

(3)摄像头检测演示

点击摄像头图标,可以打开摄像头,可以实时进行检测,再次点击摄像头图标,可关闭摄像头。
在这里插入图片描述

(4)保存图片与视频检测结果

点击保存按钮后,会将当前选择的图片【含批量图片】或者视频的检测结果进行保存。检测的图片与视频结果会存储在save_data目录下。
在这里插入图片描述

在这里插入图片描述

二、模型的训练、评估与推理

1.YOLOv8的基本原理

YOLOv8是一种前沿的目标检测技术,它基于先前YOLO版本在目标检测任务上的成功,进一步提升了性能和灵活性。主要的创新点包括一个新的骨干网络、一个新的 Ancher-Free 检测头和一个新的损失函数,可以在从 CPU 到 GPU 的各种硬件平台上运行
其主要网络结构如下:
在这里插入图片描述

2. 数据集准备与训练

通过网络上搜集关于不同类型舰船的各类图片,并使用LabelMe标注工具对每张图片中的目标边框(Bounding Box)及类别进行标注。一共包含8476张图片,其中训练集包含7406张图片验证集包含689张图片测试集包含381张图片部分图像及标注如下图所示。
在这里插入图片描述
在这里插入图片描述
图片数据的存放格式如下,在项目目录中新建datasets目录,同时将跌倒检测的图片分为训练集与验证集放入ShipData目录下。
在这里插入图片描述

同时我们需要新建一个data.yaml文件,用于存储训练数据的路径及模型需要进行检测的类别。YOLOv8在进行模型训练时,会读取该文件的信息,用于进行模型的训练与验证。data.yaml的具体内容如下:

train: E:\MyCVProgram\ShipDetection\datasets\ShipData\train
val: E:\MyCVProgram\ShipDetection\datasets\ShipData\valid
test: E:\MyCVProgram\ShipDetection\datasets\ShipData\test

nc: 10
names: ['AircraftCarrier', 'Bulkers', 'CarCarrier', 'ContainerShip', 'Cruise', 'DDG', 'Recreational', 'Sailboat', 'Submarine', 'Tug']

注:train与val后面表示需要训练图片的路径,建议直接写自己文件的绝对路径。
数据准备完成后,通过调用train.py文件进行模型训练,epochs参数用于调整训练的轮数,batch参数用于调整训练的批次大小【根据内存大小调整,最小为1】,代码如下:

# 加载模型
model = YOLO("yolov8n.pt")  # 加载预训练模型
# Use the model
if __name__ == '__main__':
    # Use the model
    results = model.train(data='datasets/ShipData/data.yaml', epochs=250, batch=4)  # 训练模型
    # 将模型转为onnx格式
    # success = model.export(format='onnx')

3. 训练结果评估

在深度学习中,我们通常用损失函数下降的曲线来观察模型训练的情况。YOLOv8在训练时主要包含三个方面的损失:定位损失(box_loss)、分类损失(cls_loss)和动态特征损失(dfl_loss),在训练结束后,可以在runs/目录下找到训练过程及结果文件,如下所示:
在这里插入图片描述

各损失函数作用说明:
定位损失box_loss:预测框与标定框之间的误差(GIoU),越小定位得越准;
分类损失cls_loss:计算锚框与对应的标定分类是否正确,越小分类得越准;
动态特征损失(dfl_loss):DFLLoss是一种用于回归预测框与目标框之间距离的损失函数。在计算损失时,目标框需要缩放到特征图尺度,即除以相应的stride,并与预测的边界框计算Ciou Loss,同时与预测的anchors中心点到各边的距离计算回归DFLLoss。这个过程是YOLOv8训练流程中的一部分,通过计算DFLLoss可以更准确地调整预测框的位置,提高目标检测的准确性。
本文训练结果如下:
在这里插入图片描述

我们通常用PR曲线来体现精确率和召回率的关系,本文训练结果的PR曲线如下。mAP表示Precision和Recall作为两轴作图后围成的面积,m表示平均,@后面的数表示判定iou为正负样本的阈值。mAP@.5:表示阈值大于0.5的平均mAP,可以看到本文模型10类目标识别的mAP@0.5平均值为0.982,结果是非常不错的。
在这里插入图片描述

4. 检测结果识别

模型训练完成后,我们可以得到一个最佳的训练结果模型best.pt文件,在runs/trian/weights目录下。我们可以使用该文件进行后续的推理检测。
图片检测代码如下:

# 所需加载的模型目录
path = 'models/best.pt'
# 需要检测的图片地址
img_path = "TestFiles/ANDROMEDA-SPIRIT_jpg.rf.ac983fbdb5142eb24fdcf312bca604aa.jpg"

# 加载预训练模型
# conf	0.25	object confidence threshold for detection
# iou	0.7	intersection over union (IoU) threshold for NMS
model = YOLO(path, task='detect')
# model = YOLO(path, task='detect',conf=0.5)


# 检测图片
results = model(img_path)
res = results[0].plot()
cv2.imshow("YOLOv8 Detection", res)
cv2.waitKey(0)

执行上述代码后,会将执行的结果直接标注在图片上,结果如下:
在这里插入图片描述

以上便是关于此款舰船目标分类检测系统的原理与代码介绍。基于此模型,博主用pythonPyqt5开发了一个带界面的软件系统,即文中第二部分的演示内容,能够很好的支持图片、视频及摄像头进行检测,同时支持检测结果的保存

关于该系统涉及到的完整源码、UI界面代码、数据集、训练代码、测试图片视频等相关文件,均已打包上传,感兴趣的小伙伴可以通过下载链接自行获取。


【获取方式】

关注下方名片G-Z-H:【阿旭算法与机器学习】,回复【软件】即可获取下载方式

本文涉及到的完整全部程序文件:包括python源码、数据集、训练代码、UI文件、测试图片视频等(见下图),获取方式见文末:
在这里插入图片描述

注意:该代码基于Python3.9开发,运行界面的主程序为MainProgram.py,其他测试脚本说明见上图。为确保程序顺利运行,请按照程序运行说明文档txt配置软件运行所需环境。

关注下方名片GZH:【阿旭算法与机器学习】,回复【软件】即可获取下载方式


结束语

以上便是博主开发的基于YOLOv8深度学习的舰船目标分类检测系统的全部内容,由于博主能力有限,难免有疏漏之处,希望小伙伴能批评指正。
关于本篇文章大家有任何建议或意见,欢迎在评论区留言交流!

觉得不错的小伙伴,感谢点赞、关注加收藏哦!

  • 33
    点赞
  • 42
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 2
    评论
### 回答1: OS-CFAR(Ordered-Statistic Constant False Alarm Rate)算法是一种用于雷达系统目标检测和跟踪的信号处理算法,其目的是通过检测雷达背景噪声中的目标,提高雷达系统目标检测性能。 OS-CFAR算法中,首先需要获取雷达背景噪声的统计量,然后使用该统计量和预设的虚警概率,计算出一个门限值,用于检测雷达回波中的目标。在舰船检测中,OS-CFAR算法可以应用于海上舰艇的目标识别和跟踪。 OS-CFAR舰船检测代码中包括以下重要的步骤: 1. 获取雷达回波数据,包括雷达波束扫描角度、距离和信号强度等信息。 2. 通过计算雷达回波数据的统计量,例如均值和方差,来获取雷达背景噪声的特征值。 3. 通过预设的虚警概率和获取的背景噪声特征值,计算出目标检测的门限值。 4. 对雷达回波数据进行扫描,将信号强度大于门限值的数据进行标记,以判定是否存在舰船目标。 5. 根据标记结果,进行目标跟踪,可以采用多种算法,如卡尔曼滤波。 通过上述步骤,OS-CFAR舰船检测代码可以实现对海上舰艇的快速识别和跟踪,提高海上巡航的安全性和效率。 ### 回答2: OS-CFAR是一种常用的舰船检测算法,它利用矩阵计算加速傅里叶变换,实现快速目标检测。OS-CFAR的具体实现步骤如下: 1. 处理图像数据,将图像分割成若干个小矩阵,每个小矩阵的大小与待检测目标的大小相同。 2. 对每个小矩阵进行傅里叶变换,将时域信号转换为频域信号。 3. 利用OS-CFAR算法对每个小矩阵的频域信号进行处理,得到频域中的显著点(即有目标可能存在的点)。 4. 利用逆傅里叶变换将频域信号转换回时域信号,得到目标矩形框的位置信息。 OS-CFAR算法的具体实现过程可以用以下代码描述: (1)对图像进行分割,将图像分割成若干个大小相同的小矩阵: ```python def image_segmentation(image, chip_size): """ 对图像进行分割 image: 输入的原始图像 chip_size: 每个小矩阵的大小 """ num_rows, num_cols = image.shape[:2] num_chips_vertical = num_rows // chip_size num_chips_horizontal = num_cols // chip_size chips = [] for i in range(num_chips_vertical): for j in range(num_chips_horizontal): chip = image[i*chip_size:(i+1)*chip_size, j*chip_size:(j+1)*chip_size] chips.append(chip) return chips ``` (2)对每个小矩阵进行傅里叶变换: ```python def fft_process(data): """ 对每个小矩阵进行傅里叶变换 data: 输入的小矩阵 """ fft_result = np.fft.fft2(data) return fft_result ``` (3)利用OS-CFAR算法对每个小矩阵的频域信号进行处理,得到频域中的显著点: ```python def os_cfar_process(data, guard_band_size=2, reference_band_size=16, false_alarm_rate=1e-5): """ 利用OS-CFAR算法对每个小矩阵的频域信号进行处理 data: 输入的频域信号 guard_band_size: 保护带大小 reference_band_size: 参考带大小 false_alarm_rate: 误报率 """ num_rows, num_cols = data.shape num_guard_band_rows = 2 * guard_band_size + 1 num_guard_band_cols = 2 * guard_band_size + 1 num_reference_band_rows = 2 * reference_band_size + 1 num_reference_band_cols = 2 * reference_band_size + 1 threshold = np.percentile(np.abs(data), 100 * (1 - false_alarm_rate)) result = np.zeros((num_rows, num_cols), dtype=bool) for i in range(guard_band_size, num_rows - guard_band_size): for j in range(guard_band_size, num_cols - guard_band_size): guard_band = data[i - guard_band_size:i + guard_band_size + 1, j - guard_band_size: j + guard_band_size + 1] reference_band = np.concatenate(( data[i - reference_band_size:i - guard_band_size, j - reference_band_size:j + reference_band_size + 1], data[i + guard_band_size + 1:i + reference_band_size + 1, j - reference_band_size:j + reference_band_size + 1] )) threshold_value = np.percentile(np.abs(reference_band), 100 * (1 - false_alarm_rate)) if np.abs(guard_band).max() < threshold_value: continue if np.abs(guard_band).max() >= threshold: result[i, j] = True return result ``` (4)利用逆傅里叶变换将频域信号转换回时域信号,得到目标矩形框的位置信息: ```python def ifft_process(data): """ 利用逆傅里叶变换将频域信号转换回时域信号 data: 输入的频域信号 """ ifft_result = np.fft.ifft2(data) return ifft_result ``` 这样,经过以上步骤,我们就可以得到OS-CFAR算法的舰船检测结果了。 ### 回答3: OS-CFAR(Ordnance Survey-Constant False Alarm Rate)舰船检测是一种有效的海上目标检测方法,其主要应用于计算机视觉领域。OS-CFAR算法通过对雷达波传输的信号进行处理,有效地识别目标物体。下面简单介绍OS-CFAR舰船检测代码。 首先,在编写OS-CFAR舰船检测代码之前,需要考虑到的是数据的获取和处理。数据获取可以通过雷达、卫星等多种手段获得,数据处理则需要运用数学模型进行预处理。在得到数据后,可以进行如下步骤来编写代码: 1、预处理:读取数据时需要预处理,包括信号平滑和去噪。平滑可以通过低通滤波器实现,去噪可以采用中值滤波等方法。 2、确定窗口大小和检测阈值:在检测中,需要确定窗口大小(即需要识别目标的大小)和检测阈值(即目标边缘和检测器的响应值之间的差异值),以此来提高检测的准确性。 3、采用CFAR算法:CFAR算法是指Constant False Alarm Rate(恒定虚警率)算法,能够控制误检率。CFAR算法将检测窗口分成方块,通过计算平均信号和标准差,确定检测阈值。 4、采用OS-CFAR检测:OS-CFAR检测是在CFAR检测的基础上再进行了优化,主要是针对海上目标的特点。在海上,船只和海浪信号的干扰很大,因此需要采用加权平均和局部方差等方法来优化检测算法。 综上所述,OS-CFAR舰船检测代码需要考虑数据的预处理和处理过程中的参数设置。对比CFAR算法,OS-CFAR算法能够更有效地对海上目标进行识别

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

阿_旭

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值