【经典神经网络架构解析篇】【2】Alexnet网络详解:模型结构解析、创新、代码实现

《------往期经典推荐------》

一、AI应用软件开发实战专栏【链接】

项目名称项目名称
1.【人脸识别与管理系统开发2.【车牌识别与自动收费管理系统开发
3.【手势识别系统开发4.【人脸面部活体检测系统开发
5.【图片风格快速迁移软件开发6.【人脸表表情识别系统
7.【YOLOv8多目标识别与自动标注软件开发8.【基于YOLOv8深度学习的行人跌倒检测系统
9.【基于YOLOv8深度学习的PCB板缺陷检测系统10.【基于YOLOv8深度学习的生活垃圾分类目标检测系统
11.【基于YOLOv8深度学习的安全帽目标检测系统12.【基于YOLOv8深度学习的120种犬类检测与识别系统
13.【基于YOLOv8深度学习的路面坑洞检测系统14.【基于YOLOv8深度学习的火焰烟雾检测系统
15.【基于YOLOv8深度学习的钢材表面缺陷检测系统16.【基于YOLOv8深度学习的舰船目标分类检测系统
17.【基于YOLOv8深度学习的西红柿成熟度检测系统18.【基于YOLOv8深度学习的血细胞检测与计数系统
19.【基于YOLOv8深度学习的吸烟/抽烟行为检测系统20.【基于YOLOv8深度学习的水稻害虫检测与识别系统
21.【基于YOLOv8深度学习的高精度车辆行人检测与计数系统22.【基于YOLOv8深度学习的路面标志线检测与识别系统
23.【基于YOLOv8深度学习的智能小麦害虫检测识别系统24.【基于YOLOv8深度学习的智能玉米害虫检测识别系统
25.【基于YOLOv8深度学习的200种鸟类智能检测与识别系统26.【基于YOLOv8深度学习的45种交通标志智能检测与识别系统
27.【基于YOLOv8深度学习的人脸面部表情识别系统28.【基于YOLOv8深度学习的苹果叶片病害智能诊断系统
29.【基于YOLOv8深度学习的智能肺炎诊断系统30.【基于YOLOv8深度学习的葡萄簇目标检测系统
31.【基于YOLOv8深度学习的100种中草药智能识别系统32.【基于YOLOv8深度学习的102种花卉智能识别系统
33.【基于YOLOv8深度学习的100种蝴蝶智能识别系统34.【基于YOLOv8深度学习的水稻叶片病害智能诊断系统
35.【基于YOLOv8与ByteTrack的车辆行人多目标检测与追踪系统36.【基于YOLOv8深度学习的智能草莓病害检测与分割系统
37.【基于YOLOv8深度学习的复杂场景下船舶目标检测系统38.【基于YOLOv8深度学习的农作物幼苗与杂草检测系统
39.【基于YOLOv8深度学习的智能道路裂缝检测与分析系统40.【基于YOLOv8深度学习的葡萄病害智能诊断与防治系统
41.【基于YOLOv8深度学习的遥感地理空间物体检测系统42.【基于YOLOv8深度学习的无人机视角地面物体检测系统
43.【基于YOLOv8深度学习的木薯病害智能诊断与防治系统44.【基于YOLOv8深度学习的野外火焰烟雾检测系统
45.【基于YOLOv8深度学习的脑肿瘤智能检测系统46.【基于YOLOv8深度学习的玉米叶片病害智能诊断与防治系统
47.【基于YOLOv8深度学习的橙子病害智能诊断与防治系统48.【基于深度学习的车辆检测追踪与流量计数系统
49.【基于深度学习的行人检测追踪与双向流量计数系统50.【基于深度学习的反光衣检测与预警系统
51.【基于深度学习的危险区域人员闯入检测与报警系统52.【基于深度学习的高密度人脸智能检测与统计系统
53.【基于深度学习的CT扫描图像肾结石智能检测系统54.【基于深度学习的水果智能检测系统
55.【基于深度学习的水果质量好坏智能检测系统56.【基于深度学习的蔬菜目标检测与识别系统
57.【基于深度学习的非机动车驾驶员头盔检测系统58.【太基于深度学习的阳能电池板检测与分析系统
59.【基于深度学习的工业螺栓螺母检测60.【基于深度学习的金属焊缝缺陷检测系统
61.【基于深度学习的链条缺陷检测与识别系统62.【基于深度学习的交通信号灯检测识别
63.【基于深度学习的草莓成熟度检测与识别系统64.【基于深度学习的水下海生物检测识别系统
65.【基于深度学习的道路交通事故检测识别系统66.【基于深度学习的安检X光危险品检测与识别系统
67.【基于深度学习的农作物类别检测与识别系统68.【基于深度学习的危险驾驶行为检测识别系统
69.【基于深度学习的维修工具检测识别系统70.【基于深度学习的维修工具检测识别系统
71.【基于深度学习的建筑墙面损伤检测系统72.【基于深度学习的煤矿传送带异物检测系统
73.【基于深度学习的老鼠智能检测系统

二、机器学习实战专栏【链接】,已更新31期,欢迎关注,持续更新中~~
三、深度学习【Pytorch】专栏【链接】
四、【Stable Diffusion绘画系列】专栏【链接】
五、YOLOv8改进专栏【链接】持续更新中~~
六、YOLO性能对比专栏【链接】,持续更新中~

《------正文------》

引言

2012年,深度学习领域经历了一次突破,推出了AlexNet,这是一种卷积神经网络(CNN),改变了图像分类。由Alex Krizhevsky、Ilya Sutskever和Geoffrey欣顿设计的AlexNet在当年赢得了ImageNet大规模视觉识别挑战赛(ILSVRC),其准确性比现有模型有了惊人的提高。AlexNet的表现不仅使CNN成为图像处理的强大工具,还引发了人们对深度学习的新兴趣。

AlexNet的关键细节

  • 性能:AlexNet是专为2012年ILSVRC设计的,它实现了15.3%的前5名错误率,超过了次佳模型的26.2%的错误率。这一成功标志着CNN和更广泛的深度学习领域的关键时刻。
  • 数据集:AlexNet在ImageNet数据集上进行训练,该数据集包含1,000个类别的120多万张图像。ImageNet的大规模数据集允许模型学习复杂的抽象特征,这表明CNN可以处理真实世界的图像数据。

AlexNet架构解析

AlexNet由八层组成:五个卷积层,然后是三个完全连接的层。以下是其结构的分解:

  1. 输入层:模型将227x227 RGB图像作为输入。
  2. 第一卷积层:96个大小为11×11的过滤器,步长为4。它使用3×3内核和步幅2执行最大池化。
  3. 第二卷积层:256个大小为5 x 5的过滤器,pad=2,然后是最大池化。
  4. 第三、第四和第五卷积层:分别为384、384和256个过滤器,每个过滤器的核大小为3×3,pad = 1。
  5. 全连接层:最后三层是全连接的,前两层各有4096个神经元,最后一个输出层有1,000个神经元(用于1,000个类别的分类)。

img AlexNet架构

img AlexNet架构

每一层都使用ReLU激活函数来引入非线性,与LeNet等早期架构中使用的tanh或sigmoid激活相比,这提高了收敛速度。

AlexNet的主要创新

  • ReLU激活:虽然LeNet使用tanh激活,但AlexNet引入了ReLU,它加速了收敛并减少了训练时间。
  • GPU利用率:AlexNet是最早利用GPU并行性的深度学习模型之一,在训练中使用两个GPU来处理大型模型和数据集。
  • Dropout正则化:AlexNet引入了Dropout,这是一种正则化技术,在训练过程中随机“丢弃”神经元以减少过度拟合。
  • 数据增强:为了进一步减少过度拟合,AlexNet应用了随机裁剪和水平翻转等技术,显著扩展了有效数据集。

Lenet和Alexnet的比较

img

AlexNet代码实现

import tensorflow as tf
from tensorflow.keras import layers, models, datasets
import numpy as np

# Load and preprocess the CIFAR-10 dataset
(x_train, y_train), (x_test, y_test) = datasets.cifar10.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0  # Normalize the pixel values

# Define the AlexNet architecture
model = models.Sequential([
    # First Convolutional Layer
    layers.Conv2D(96, kernel_size=(11, 11), strides=(4, 4), activation='relu', input_shape=(32, 32, 3)),
    layers.MaxPooling2D(pool_size=(3, 3), strides=(2, 2)),
    
    # Second Convolutional Layer
    layers.Conv2D(256, kernel_size=(5, 5), padding="same", activation='relu'),
    layers.MaxPooling2D(pool_size=(3, 3), strides=(2, 2)),
    
    # Third, Fourth, and Fifth Convolutional Layers
    layers.Conv2D(384, kernel_size=(3, 3), padding="same", activation='relu'),
    layers.Conv2D(384, kernel_size=(3, 3), padding="same", activation='relu'),
    layers.Conv2D(256, kernel_size=(3, 3), padding="same", activation='relu'),
    layers.MaxPooling2D(pool_size=(3, 3), strides=(2, 2)),
    
    # Flatten and Fully Connected Layers
    layers.Flatten(),
    layers.Dense(4096, activation='relu'),
    layers.Dropout(0.5),
    layers.Dense(4096, activation='relu'),
    layers.Dropout(0.5),
    layers.Dense(10, activation='softmax')  # CIFAR-10 has 10 classes
])

# Compile the model
model.compile(optimizer='adam',
              loss='sparse_categorical_crossentropy',
              metrics=['accuracy'])

# Train the model
model.fit(x_train, y_train, epochs=10, batch_size=64, validation_data=(x_test, y_test))

# Evaluate the model
test_loss, test_acc = model.evaluate(x_test, y_test)
print(f'Test Accuracy: {test_acc:.4f}')

总结

AlexNet在2012年ImageNet竞赛中的胜利证明了CNN在解决复杂、大规模图像分类任务方面的潜力。通过构建LeNet的基本原则,并引入ReLU、dropout和基于GPU的训练等创新,AlexNet引发了一场深度学习革命。尽管今天的模型在深度和复杂性方面远远超过了AlexNet,但该架构的影响仍然是基础性的,为大规模图像识别任务中的卷积网络设定了标准。


在这里插入图片描述

好了,这篇文章就介绍到这里,喜欢的小伙伴感谢给点个赞和关注,更多精彩内容持续更新~~
关于本篇文章大家有任何建议或意见,欢迎在评论区留言交流!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

阿_旭

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值