2021-04-15

本文基于原始代码对声音识别模型进行了优化,将两层卷积改为三层,并尝试了不同的激活函数,从tanh转换为relu再到leakyrelu。同时,优化器从tanh调整为RMSprop,训练次数调整为18次。通过实验,观察并分析了模型的准确率(acc)和损失(loss)变化,以提升模型性能。
摘要由CSDN通过智能技术生成

零基础入门食物声音识别2:
基于博文1的代码进行了参数调整
1.源代码中采用的两层卷积+池化层,修改后采用三层卷积
2.对激活函数进行调整,源代码采用的是tanh 先进行了relu函数替换,在进行lekay relu函数替换
3.改变优化器模型 从tanh改变为rsmprop
4.根据源代码生成相关acc及loss图像,对epochs进行修正 从20次迭代更新为18次迭代

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值