论文阅读
文章平均质量分 90
以点云、深度学习相关的论文
zycongzz
这个作者很懒,什么都没留下…
展开
-
论文阅读“FoldingNet: Interpretable Unsupervised Learning on 3D Point Clouds”
FoldingNet: Interpretable Unsupervised Learning on 3D Point Clouds详细信息1. 摘要2. 问题3. 思路4. 方法5.平台6.验证7.评价详细信息CVPR 2018 Yaoqing Yang, Chen Feng, Yiru Shen, Dong Tian1. 摘要最近直接处理点集中的点的深度网络,例如PointNet,已经在点云的监督语义学习任务(如分类和分割)方面达到了最先进的水平。在这项工作中,提出了一种新颖的端到端深度自动原创 2021-12-16 15:40:12 · 750 阅读 · 0 评论 -
论文阅读“TopNet: Structural Point Cloud Decoder”
TopNet: Structural Point Cloud Decoder论文信息1.摘要2.问题3.方法论文信息2019 cvpr1.摘要三维点云生成对于三维场景建模和理解有很大的帮助。真实世界的3D对象点云可以通过低层和高层结构(如表面、几何基元、语义部分等)的集合来恰当地描述。事实上,三维对象点云作为一组点组存在着许多不同的表示形式。现有的点云生成框架要么在其提出的解决方案中不考虑结构,要么假设并强制执行一个特定的结构/拓扑,例如,对于生成的三维对象的点云,一个流形或曲面的集合。在这项工作中原创 2021-12-15 21:07:11 · 2377 阅读 · 1 评论 -
论文阅读“PoinTr: Diverse Point Cloud Completion with Geometry-Aware Transformers”
PoinTr: Diverse Point Cloud Completion with Geometry-Aware Transformers基本信息1.摘要2. 问题基本信息Xumin Y u*, Y ongming Rao*, Ziyi Wang, Zuyan Liu, Jiwen Lu†, Jie Zhou1.摘要由于传感器分辨率、单视点和遮挡的限制,在实际应用中捕获的点云通常是不完整的。因此,从局部点云中恢复完整点云成为许多实际应用中不可缺少的任务。在本文中,我们提出了一种新的方法,将点云完原创 2021-12-07 12:50:22 · 1430 阅读 · 0 评论 -
论文阅读“CpT: Convolutional Point Transformer for 3D Point Cloud Processing”
CpT: Convolutional Point Transformer for 3D Point Cloud Processing文章信息摘要问题思路方法平台验证参考文章信息摘要我们介绍了CpT:Convolutional point Transformer–一种新的深度学习体系结构,用于处理三维点云数据的非结构化性质。CpT是对现有基于注意的卷积神经网络以及以前的3D点云处理变压器的改进。它实现了这一壮举,因为它通过一个卷积投影层(为动态处理局部点集邻域而精心设计)有效地创建了一个新颖而健壮的基于原创 2021-11-25 15:28:22 · 715 阅读 · 0 评论 -
论文阅读“RL-GAN-Net: A Reinforcement Learning Agent Controlled GAN Network for Real-Time Point Cloud Sh”
RL-GAN-Net: A Reinforcement Learning Agent Controlled GAN Network for Real-Time Point Cloud Shape Completion题目作者代码引言题目RL-GAN-Net: A Reinforcement Learning Agent Controlled GAN Network for Real-Time Point Cloud Shape CompletionRL-GAN-Net:一种用于实时点云形状完成的强化学原创 2021-11-10 21:40:24 · 2687 阅读 · 0 评论 -
论文阅读“Adaptive Automatic Robot Tool Path Generation Based on Point Cloud Projection Algorithm”
RL-GAN-Net: A Reinforcement Learning Agent Controlled GAN Network for Real-Time Point Cloud Shape Completion题目作者1.摘要2.问题3.方法3.1 方法流程3.2 路径规划算法3.3 点云分割3.4 点云投影3.5 工具模式设计1.边界刀具轨迹2.螺旋刀具轨迹3. 轮廓parellel刀具轨迹3.曲折的路径3.6 工艺参数3.7 笛卡尔轨迹规划和ROS Rviz仿真结果引用题目RL-GAN网络:原创 2021-11-09 15:58:58 · 1025 阅读 · 0 评论 -
论文阅读:PCN: Point Completion Network
PCN: Point Completion Network题目作者代码地址引言介绍题目PCN: Point Completion Network点云修补网络作者卡耐基梅隆大学机器人研究所{wyuan1, tkhot, dheld, cmertz, Hebert}@cs.cmu.edu代码地址PCN源码引言本文提出了一种新的基于学习的点云修补网络,和现有的补全方法不同,PCN直接对原始点云进行操作,没有任何结构假设(如对称性)或对底层形状的注释(如语义类)。它的特点是一个解码器设计,允许在保原创 2021-11-09 13:18:14 · 3878 阅读 · 0 评论 -
论文点云:基于深度学习的点云分类和切割
基于深度学习的点云分类和切割作者摘要面对的问题方法对PointNet的回顾:一种通用的连续函数逼近器作者Charles R. Qi Li Yi Hao Su Leonidas J. GuibasStanford University摘要对于有关于点云处理方面的深度学习著作少之又少。PointNet[20] 是这方面的先驱。通过设计点网无法捕获由度量空间点所产生的局部结构,从而限制了其识别细粒度模式的能力以及对复杂场景的通用性。本文介绍了一种分层神经网络,它将点云递归的应用到输入点云集,利用度量原创 2021-09-27 11:05:39 · 1413 阅读 · 0 评论 -
论文阅读 “Adaptive Tool Path Planning Strategy for Freeform Surface Machining using Point Cloud Article”
基于点云的自由曲面自适应刀具轨迹规划策略作者摘要作者Mandeep Dhanda1和S.S.Pande21 Indian Institute of Technology Bombay, India, mandeepdhanda25@gmail.com2 Indian Institute of Technology Bombay, India, s.s.pande@iitb.ac.in摘要本文报告了一种有效的刀具路径规划策略的开发,该策略可直接从自由曲面的点云表示形式进行加工,而无需进行过渡曲面拟原创 2021-09-23 10:23:34 · 721 阅读 · 0 评论 -
论文阅读 “Generating efficient tool paths from point cloud data via machining area segmentation”
题目通过加工区域分割,从点云数据中生成有效的刀具路径摘要提出了一种直接从点云数据生成高效三轴球头铣刀,提出了一种直接从点云数据生成高效三轴球头铣刀轨迹的方法。主要目标是在具有孤立复杂加工区域的自由曲面几何中实现高效率的加工。论文的意义其主要目标是在具有孤立复杂加工区域的自由曲面几何体的加工中实现高效率。通过根据数据点的几何复杂性将整个加工区域分割成不同的区域,并使用不同尺寸的刀具对分割的加工区域进行加工,可以获得较高的加工效率。推导了一种迭代的数值方法来确定临界复杂度,将复杂度较高的数据点(复数点原创 2021-09-17 20:25:56 · 126 阅读 · 0 评论 -
论文笔记——基于深度学习的3d点云处理
论文笔记——基于深度学习的3d点云处理摘要针对的问题此文的贡献摘要 深度学习在2D图像中表现出来了优越的性能,在对非结构化的信息处理已经具有了一定 的潜力成为了计算机图形学的重要研究方向。 此篇文章介绍了点云拓扑结构的提取方法,然后进行了对比分析、结构提取、检测和修复等等最后总结了常用的3D点云的数据集。 主要围绕的是深度学习在形状分析、结构提取、检测和修复等方向的一系列作用。针对的问题3D数据中的深度学习方法常常不太相同,表现在点云数据中有一定的局限性(分辨率、基于特征的深度神经网络在表现原创 2021-09-15 15:28:41 · 781 阅读 · 0 评论