Description
给定长度为N的数列A,以及M条指令,每条指令可能是以下两种之一:
1、“1 x y”,查询区间 [x,y] 中的最大连续子段和。
2、“2 x y”,把 A[x] 改成 y。对于每个查询指令,输出一个整数表示答案。
Input
第一行两个整数N,M。
第二行N个整数A[i]。
接下来M行每行3个整数k,x,y,k=1表示查询(此时如果x>y,请交换x,y),k=2表示修改。
数据范围
N ≤ 500000,M ≤ 100000
Output
对于每个查询指令输出一个整数表示答案。
每个答案占一行。
Sample Input
5 3
1 2 -3 4 5
1 2 3
2 2 -1
1 3 2
Sample Output
2
-1
#include<iostream>
using namespace std;
const int maxn=500005,INF=0X3F3F3F3F;
struct SegmentTree{
int l,r,lmax,rmax,sum,ans;
//l存储区间的左端点
//r存储区间的右端点
//lmax存储区间的紧靠左端的最大连续子段和
//rmax存储区间的紧靠右端的最大连续子段和
//sum存储区间的总和
//ans存储区间的整体的最大连续子段和
SegmentTree()
{
sum=l=r=0;
ans=lmax=rmax=-INF;
}//对区间的端点值以及子段和进行初始化
}tree[maxn<<2];
int n,m;
int a[maxn];
void popush(int p)
{
tree[p].sum=tree[p<<1].sum+tree[p<<1|1].sum;
//p区间的总和等于左右子树的和
tree[p].lmax=max(tree[p<<1].lmax,tree[p<<1].sum+tree[p<<1|1].lmax);
//当前区间的紧靠左的最大连续子段和为 左子树的紧靠左的最大连续子段和
//或左子树的所有值的总和加上右子树的紧靠左的最大连续子段和
tree[p].rmax=max(tree[p<<1|1].rmax,tree[p<<1|1].sum+tree[p<<1].rmax);
//区间的紧靠右的最大连续子段和原理与紧靠左的原理相同
tree[p].ans=max(max(tree[p<<1].ans,tree[p<<1|1].ans),tree[p<<1].rmax+tree[p<<1|1].lmax);
}
void bulid(int p,int l,int r)
{
tree[p].l=l;
tree[p].r=r;
if(l==r)
{
tree[p].ans=tree[p].lmax=tree[p].rmax=tree[p].sum=a[l];
//当建立线段树时此时表示到达了叶结点出
return;
}
int mid=(l+r)>>1;
bulid(p<<1,l,mid);//建立左子树
bulid(p<<1|1,mid+1,r);//建立右子树
popush(p);//对p区间的线段和等值进行更新
}
SegmentTree ask(int p,int l,int r)
{
if(l<=tree[p].l&&r>=tree[p].r)
return tree[p];
SegmentTree a,b,ret;
int mid=(tree[p].l+tree[p].r)>>1;
if(l<=mid){
a=ask(p<<1,l,r);//如果寻找的左端点小于或等于当前区间的左端点的或则进行左子树的查询
//但要注意的是查询的 区间l~r是不能变的
//ret.sum+=a.sum;
}
if(r>mid){
b=ask(p<<1|1,l,r);//同理进行右子树的查询
// ret.sum+=b.sum;
}
ret.sum=a.sum+b.sum;
ret.lmax=max(a.lmax,a.sum+b.lmax);
ret.rmax=max(b.rmax,b.sum+a.rmax);
ret.ans=max(max(a.ans,b.ans),a.rmax+b.lmax);
//与popush函数的作用相同
return ret;
}
void change(int p,int x,int v)
{
if(tree[p].l==tree[p].r)
{
tree[p].ans=tree[p].lmax=tree[p].rmax=tree[p].sum=v;
return;
}
int mid=(tree[p].l+tree[p].r)>>1;
if(x<=mid)
{
change(p<<1,x,v);//符合条件时进行左子树的遍历修改
}
else change(p<<1|1,x,v);
popush(p);//当修改过该区间后需要对该区间进行各项子段和的更新
}
int main(){
cin>>n>>m;
for(int i=1;i<=n;i++)
scanf("%d",&a[i]);
bulid(1,1,n);
while(m--)
{
int tree,x,y;
scanf("%d %d %d",&tree,&x,&y);
if(tree==1)
{
if(x>y)swap(x,y);
cout<<ask(1,x,y).ans<<endl;
}
else change(1,x,y);
}
return 0;
}