在建立系统空间模型时,由于状态变量选择的非唯一性,可以得到不同的状态空间表达式,本文下面是讲述怎么将一个状态空间表达式转换成标准型。
1.系统状态的线性变换
对于一个n阶控制系统,x1,x2,...,xn和是描述同一系统的两组不同的状态变量,则两组状态变量之间存在着非奇异变换关系:
其中P是nxn非奇异矩阵。
线性变换后,其状态空间表达式也发生变化,设线性定常系统的状态空间表达式为:
状态的线性变换为:
又可得下的状态空间表达式为:
或:
其中
上式表明了线性变换的状态空间表达式各相应系数矩阵之间的关系。
下面为变换的例题:
2.系统的特征值
设A是一个nxn的矩阵,若在向量空间中存在一非零向量,使得:
则称为A的特征值,任何满足上式的非零向量v称为A的对应于特征值
的特征向量。也可改写为:
要使得这个线性方程有非零解,充要条件是:
并且线性定常系统的特征值在经过线性变换后矩阵A的特征值不变。
3.对角线标准型
对于线性系统
若A的特征值是互异的,则存在非奇异变换矩阵P
使之将原状态空间表达式变换为对角线标准型
其中
是一个关于特征值的对角矩阵,
,
对于有互异根的矩阵A才会有标准的对角线矩阵,对于有重根的矩阵A只能化成约当标准型。