【现控理论】(一、系统状态空间表达式的特征标准型)----学习笔记

        在建立系统空间模型时,由于状态变量选择的非唯一性,可以得到不同的状态空间表达式,本文下面是讲述怎么将一个状态空间表达式转换成标准型。

1.系统状态的线性变换

对于一个n阶控制系统,x1,x2,...,xn和\tilde{x1},\tilde{x2},...,\tilde{xn}是描述同一系统的两组不同的状态变量,则两组状态变量之间存在着非奇异变换关系:

\left\{\begin{matrix} x=P\tilde{x} & & \\ \tilde{x}=P^{-1}x & & \end{matrix}\right.

其中P是nxn非奇异矩阵。

线性变换后,其状态空间表达式也发生变化,设线性定常系统的状态空间表达式为:

\left\{\begin{matrix} \dot{x} =Ax+Bu& & \\ y=Cx+Du& & \end{matrix}\right.

状态的线性变换为:

\left\{\begin{matrix} x=P\tilde{x} & & \\ \tilde{x}=P^{-1}x & & \end{matrix}\right.

 又可得\tilde{x}下的状态空间表达式为:

\left\{\begin{matrix} \dot{\tilde{x}}=P^{-1}AP\tilde{x}+P^{-1}Bu & & \\ y=Cp\tilde{x}+Du& & \end{matrix}\right.

或:

\left\{\begin{matrix} \dot{\tilde{x}}=\tilde{A}\tilde{x}+\tilde{B}u & & \\ y=\tilde{C}\tilde{x}+\tilde{D}u & & \end{matrix}\right.

其中

\left\{\begin{matrix} \tilde{A}=P^{-1}AP & & \\ \tilde{B}=P^{-1} B& & \\ \tilde{C}=CP & & \\ \tilde{D}=D& & \end{matrix}\right.

上式表明了线性变换的状态空间表达式各相应系数矩阵之间的关系。

下面为变换的例题:

 2.系统的特征值

        设A是一个nxn的矩阵,若在向量空间中存在一非零向量,使得:

Av=\lambda v

则称\lambda为A的特征值,任何满足上式的非零向量v称为A的对应于特征值\lambda的特征向量。也可改写为:

\bigl(\begin{smallmatrix} \lambda I-A \end{smallmatrix}\bigr)v=0

要使得这个线性方程有非零解,充要条件是:

\begin{vmatrix} \lambda I-A \end{vmatrix}=0

并且线性定常系统的特征值在经过线性变换后矩阵A的特征值不变。

3.对角线标准型

对于线性系统

\left\{\begin{matrix} \dot{x} =Ax+Bu& & \\ y=Cx& & \end{matrix}\right.

若A的特征值是互异的,则存在非奇异变换矩阵P

x=P\tilde{x}

使之将原状态空间表达式变换为对角线标准型

\left\{\begin{matrix} \dot{\tilde{x}}=\tilde{A}\tilde{x}+\tilde{B}u & & \\ y=\tilde{C}\tilde{x}+\tilde{D}u & & \end{matrix}\right.

 其中

\tilde{A}是一个关于特征值的对角矩阵,\tilde{B}=P^{-1}B\tilde{C}=CP

对于有互异根的矩阵A才会有标准的对角线矩阵,对于有重根的矩阵A只能化成约当标准型。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值