在火影忍者的世界里,令敌人捉摸不透是非常关键的。
我们的主角漩涡鸣人所拥有的一个招数——多重影分身之术——就是一个很好的例子。
影分身是由鸣人身体的查克拉能量制造的,使用的查克拉越多,制造出的影分身越强。
针对不同的作战情况,鸣人可以选择制造出各种强度的影分身,有的用来佯攻,有的用来发起致命一击。
那么问题来了,假设鸣人的查克拉能量为 M,他影分身的个数最多为 N,那么制造影分身时有多少种不同的分配方法?
注意:
影分身可以分配0点能量。
分配方案不考虑顺序,例如:M=7,N=3,那么 (2,2,3) 和 (2,3,2) 被视为同一种方案。
输入格式
第一行是测试数据的数目 t。
以下每行均包含二个整数 M 和 N,以空格分开。
输出格式
对输入的每组数据 M 和 N,用一行输出分配的方法数。
数据范围
0≤t≤20,
1≤M,N≤10
输入样例:
1
7 3
输出样例:
8
难度:中等
时/空限制:1s / 64MB
总通过数:4001
总尝试数:5549
来源:《信息学奥赛一本通》
算法标签
递推方程
f[i][j]表示数i分给j个数的方案总数
f[i][j]=f[i][j-1]+f[i-j][j]
即i分给j-1个数的方案里加一个0是一种来源,还有就是从i-j分给j个数的方案中的每一个数都+1也是一种方案来源,且这两种方案来源不重合,因为前者至少存在一个0,而后者全体大于等于1
#include<bits/stdc++.h>
using namespace std;
const int M=20,N=20;
int f[M][N];
int main(){
int m,n,t;
cin>>t;
while(t--){
cin>>m>>n;
memset(f,0,sizeof f);
f[0][0]=1;
for(int i=0;i<=m;++i){
for(int j=1;j<=n;++j){
f[i][j]=f[i][j-1];
if(i>=j)f[i][j]+=f[i-j][j];
}
}
cout<<f[m][n]<<endl;
}
return 0;
}