1303:鸣人的影分身
时间限制: 1000 ms 内存限制: 65536 KB
提交数: 3740 通过数: 2697
【题目描述】
在火影忍者的世界里,令敌人捉摸不透是非常关键的。我们的主角漩涡鸣人所拥有的一个招数——多重影分身之术——就是一个很好的例子。
影分身是由鸣人身体的查克拉能量制造的,使用的查克拉越多,制造出的影分身越强。
针对不同的作战情况,鸣人可以选择制造出各种强度的影分身,有的用来佯攻,有的用来发起致命一击。
那么问题来了,假设鸣人的查克拉能量为M,他影分身的个数最多为N,那么制造影分身时有多少种(用K表示)不同的分配方法?(影分身可以被分配到0点查克拉能量)
【输入】
第一行是测试数据的数目t(0≤t≤20)。以下每行均包含二个整数M和N(1≤M,N≤10),以空格分开。
【输出】
对输入的每组数据M和N,用一行输出相应的K。
【输入样例】
1
7 3
【输出样例】
8
可以理解为分苹果
用dp[m][n]表示将m点查克拉分给n个影分身的分配方法
1.当m<=1 || n<=1时,dp[m][n]=1
2.当m<n时,可以知道有n-m个影分身所分配到的查克拉为0,所有我们可以得到dp[m][n]=dp[m][m]
3.当m>=n时,这时分2种情况讨论,
第一种,至少一个影分身没有分配到查克拉,为dp[m][n-1]
第二种,所有影分身都分配到了查克拉,为dp[m-n][n]
dp[m][n]=dp[m][n-1]+dp[m-n][n]
#include<bits/stdc++.h>
#define N 110