前请提要
Pytorch学习笔记(一)--Tensor和Variable
Pytorch学习笔记(二)--autograd and dynamic-graph
Pytorch学习笔记(三)--linear regression andgradient descend(线性回归和梯度下降)
Pytorch学习笔记(四)--Logistic 回归模型
一.多层神经网络
之前学习的线性模型和logistic模型可以看作是单层神经网络,在logistic模型是 y = sigmoid(wx + b),sigmoid可以看作是激活函数,在神经网络中必须有激活函数.如果不使用激活函数 y = wn…(w1x) => y = w*n 本质上就变成了一层神经网络.
神经网络的原型来源与人类的神经网络,即从上个神经元等传来的信号经过突触传入的下个神经元,通过激活这个神经元,让信号传递到下个神经元.神经网络就是上一层网络的输入经过激活函数来输出传递到下一层.
以下是常见的激活函数:
- sigmoid 激活函数
σ(x)=1/(1+e^x)
- tanh 激活函数
tanh(x)=2σ(2x)−1
- ReLU 激活函数
ReLU(x)=max(0,x)
一般一个一层的神经网络的公式就是 y=max(0,wx+b) ,一个两层的神经网络就是 y=w2 max(0,w1x+b1)+b2 ,非常简单,但是却很有效,使用这个激活函数能够加快梯度下降法的收敛速度,同时对比与其他的激活函数,这个激活函数计算更加简单.
神经网络就是很多个神经元堆在一起形成一层神经网络,那么多个层堆叠在一起就是深层神经网络.每层神经元的个数和神经网络的层数都是可以调节的参数,会对网络产生大的影响
例子:对比一层与多层网络
画出样本点
import torch
import numpy as np
from torch import nn
from torch.autograd import Variable
import torch.nn.functional as F
import matplotlib.pyplot as plt
def plot_decision_boundary(model, x, y):
# Set min and max values and give it some padding
x_min, x_max = x[:, 0].min() - 1, x[:, 0].max() + 1
y_min, y_max = x[:, 1].min() - 1, x[:, 1].max() + 1
h = 0.01
# Generate a grid of points with distance h between them
xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))
# Predict the function value for the whole grid
Z = model(np.c_[xx.ravel(), yy