Ta-Lib函数

import tkinter as tk
from tkinter import ttk
import matplotlib.pyplot as plt

import numpy as np
import talib as ta

series = np.random.choice([1, -1], size=200)
close = np.cumsum(series).astype(float)

# 重叠指标
def overlap_process(event):
    print(event.widget.get())
    overlap = event.widget.get()
    
    upperband, middleband, lowerband = ta.BBANDS(close, timeperiod=5, nbdevup=2, nbdevdn=2, matype=0)
    fig, axes = plt.subplots(2, 1, sharex=True)
    ax1, ax2 = axes[0], axes[1]
    axes[0].plot(close, 'rd-', markersize=3)
    axes[0].plot(upperband, 'y-')
    axes[0].plot(middleband, 'b-')
    axes[0].plot(lowerband, 'y-')
    axes[0].set_title(overlap, fontproperties="SimHei")
    
    if overlap == '布林线':
        pass
    elif overlap == '双指数移动平均线':
        real = ta.DEMA(close, timeperiod=30)
        axes[1].plot(real, 'r-')
    elif overlap == '指数移动平均线 ':
        real = ta.EMA(close, timeperiod=30)
        axes[1].plot(real, 'r-')
    elif overlap == '希尔伯特变换——瞬时趋势线':
        real = ta.HT_TRENDLINE(close)
        axes[1].plot(real, 'r-')
    elif overlap == '考夫曼自适应移动平均线':
        real = ta.KAMA(close, timeperiod=30)
        axes[1].plot(real, 'r-')
    elif overlap == '移动平均线':
        real = ta.MA(close, timeperiod=30, matype=0)
        axes[1].plot(real, 'r-')
    elif overlap == 'MESA自适应移动平均':
        mama, fama = ta.MAMA(close, fastlimit=0, slowlimit=0)
        axes[1].plot(mama, 'r-')
        axes[1].plot(fama, 'g-')
    elif overlap == '变周期移动平均线':
        real = ta.MAVP(close, periods, minperiod=2, maxperiod=30, matype=0)
        axes[1].plot(real, 'r-')
    elif overlap == '简单移动平均线':
        real = ta.SMA(close, timeperiod=30)
        axes[1].plot(real, 'r-')
    elif overlap == '三指数移动平均线(T3)':
        real = ta.T3(close, timeperiod=5, vfactor=0)
        axes[1].plot(real, 'r-')
    elif overlap == '三指数移动平均线':
        real = ta.TEMA(close, timeperiod=30)
        axes[1].plot(real, 'r-')
    elif overlap == '三角形加权法 ':
        real = ta.TRIMA(close, timeperiod=30)
        axes[1].plot(real, 'r-')
    elif overlap == '加权移动平均数':
        real = ta.WMA(close, timeperiod=30)
        axes[1].plot(real, 'r-')
    plt.show()
 
# 动量指标
def momentum_process(event):
    print(event.widget.get())
    momentum = event.widget.get()
    
    upperband, middleband, lowerband = ta.BBANDS(close, timeperiod=5, nbdevup=2, nbdevdn=2, matype=0)
    fig, axes = plt.subplots(2, 1, sharex=True)
    ax1, ax2 = axes[0], axes[1]
    axes[0].plot(close, 'rd-', markersize=3)
    axes[0].plot(upperband, 'y-')
    axes[0].plot(middleband, 'b-')
    axes[0].plot(lowerband, 'y-')
    axes[0].set_title(momentum, fontproperties="SimHei")
    
    if momentum == '绝对价格振荡器':
        real = ta.APO(close, fastperiod=12, slowperiod=26, matype=0)
        axes[1].plot(real, 'r-')
    elif momentum == '钱德动量摆动指标':
        real = ta.CMO(close, timeperiod=14)
        axes[1].plot(real, 'r-')
    elif momentum == '移动平均收敛/散度':
        macd, macdsignal, macdhist = ta.MACD(close, fastperiod=12, slowperiod=26, signalperiod=9)
        axes[1].plot(macd, 'r-')
        axes[1].plot(macdsignal, 'g-')
        axes[1].plot(macdhist, 'b-')
    elif momentum == '带可控MA类型的MACD':
        macd, macdsignal, macdhist = ta.MACDEXT(close, fastperiod=12, fastmatype=0, slowperiod=26, slowmatype=0, signalperiod=9, signalmatype=0)
        axes[1].plot(macd, 'r-')
        axes[1].plot(macdsignal, 'g-')
        axes[1].plot(macdhist, 'b-')
    elif momentum == '移动平均收敛/散度 固定 12/26':
        macd, macdsignal, macdhist = ta.MACDFIX(close, signalperiod=9)
        axes[1].plot(macd, 'r-')
        axes[1].plot(macdsignal, 'g-')
        axes[1].plot(macdhist, 'b-')
    elif momentum == '动量':
        real = ta.MOM(close, timeperiod=10)
        axes[1].plot(real, 'r-')
    elif momentum == '比例价格振荡器':
        real = ta.PPO(close, fastperiod=12, slowperiod=26, matype=0)
        axes[1].plot(real, 'r-')
    elif momentum == '变化率':
        real = ta.ROC(close, timeperiod=10)
        axes[1].plot(real, 'r-')
    elif momentum == '变化率百分比':
        real = ta.ROCP(close, timeperiod=10)
        axes[1].plot(real, 'r-')
    elif momentum == '变化率的比率':
        real = ta.ROCR(close, timeperiod=10)
        axes[1].plot(real, 'r-')
    elif momentum == '变化率的比率100倍':
        real = ta.ROCR100(close, timeperiod=10)
        axes[1].plot(real, 'r-')
    elif momentum == '相对强弱指数':
        real = ta.RSI(close, timeperiod=14)
        axes[1].plot(real, 'r-')
    elif momentum == '随机相对强弱指标':
        fastk, fastd = ta.STOCHRSI(close, timeperiod=14, fastk_period=5, fastd_period=3, fastd_matype=0)
        axes[1].plot(fastk, 'r-')
        axes[1].plot(fastd, 'r-')
    elif momentum == '三重光滑EMA的日变化率':
        real = ta.TRIX(close, timeperiod=30)
        axes[1].plot(real, 'r-')

    plt.show()
    
# 周期指标
def cycle_process(event):
    print(event.widget.get())
    cycle = event.widget.get()
    
    upperband, middleband, lowerband = ta.BBANDS(close, timeperiod=5, nbdevup=2, nbdevdn=2, matype=0)
    fig, axes = plt.subplots(2, 1, sharex=True)
    ax1, ax2 = axes[0], axes[1]
    axes[0].plot(close, 'rd-', markersize=3)
    axes[0].plot(upperband, 'y-')
    axes[0].plot(middleband, 'b-')
    axes[0].plot(lowerband, 'y-')
    axes[0].set_title(cycle, fontproperties="SimHei")
    
    if cycle == '希尔伯特变换——主要的循环周期':
        real = ta.HT_DCPERIOD(close)
        axes[1].plot(real, 'r-')
    elif cycle == '希尔伯特变换,占主导地位的周期阶段':
        real = ta.HT_DCPHASE(close)
        axes[1].plot(real, 'r-')
    elif cycle == '希尔伯特变换——相量组件':
        inphase, quadrature = ta.HT_PHASOR(close)
        axes[1].plot(inphase, 'r-')
        axes[1].plot(quadrature, 'g-')
    elif cycle == '希尔伯特变换——正弦曲线':
        sine, leadsine = ta.HT_SINE(close)
        axes[1].plot(sine, 'r-')
        axes[1].plot(leadsine, 'g-')
    elif cycle == '希尔伯特变换——趋势和周期模式':
        integer = ta.HT_TRENDMODE(close)
        axes[1].plot(integer, 'r-')
        
    plt.show()
    
    
# 统计功能
def statistic_process(event):
    print(event.widget.get())
    statistic = event.widget.get()
    
    upperband, middleband, lowerband = ta.BBANDS(close, timeperiod=5, nbdevup=2, nbdevdn=2, matype=0)
    fig, axes = plt.subplots(2, 1, sharex=True)
    ax1, ax2 = axes[0], axes[1]
    axes[0].plot(close, 'rd-', markersize=3)
    axes[0].plot(upperband, 'y-')
    axes[0].plot(middleband, 'b-')
    axes[0].plot(lowerband, 'y-')
    axes[0].set_title(statistic, fontproperties="SimHei")
    
    if statistic == '线性回归':
        real = ta.LINEARREG(close, timeperiod=14)
        axes[1].plot(real, 'r-')
    elif statistic == '线性回归角度':
        real = ta.LINEARREG_ANGLE(close, timeperiod=14)
        axes[1].plot(real, 'r-')
    elif statistic == '线性回归截距':
        real = ta.LINEARREG_INTERCEPT(close, timeperiod=14)
        axes[1].plot(real, 'r-')
    elif statistic == '线性回归斜率':
        real = ta.LINEARREG_SLOPE(close, timeperiod=14)
        axes[1].plot(real, 'r-')
    elif statistic == '标准差':
        real = ta.STDDEV(close, timeperiod=5, nbdev=1)
        axes[1].plot(real, 'r-')
    elif statistic == '时间序列预测':
        real = ta.TSF(close, timeperiod=14)
        axes[1].plot(real, 'r-')
    elif statistic == '方差':
        real = ta.VAR(close, timeperiod=5, nbdev=1)
        axes[1].plot(real, 'r-')

    plt.show()

    
# 数学变换
def math_transform_process(event):
    print(event.widget.get())
    math_transform = event.widget.get()
    
    upperband, middleband, lowerband = ta.BBANDS(close, timeperiod=5, nbdevup=2, nbdevdn=2, matype=0)
    fig, axes = plt.subplots(2, 1, sharex=True)
    ax1, ax2 = axes[0], axes[1]
    axes[0].plot(close, 'rd-', markersize=3)
    axes[0].plot(upperband, 'y-')
    axes[0].plot(middleband, 'b-')
    axes[0].plot(lowerband, 'y-')
    axes[0].set_title(math_transform, fontproperties="SimHei")
    

    if math_transform == '反余弦':
        real = ta.ACOS(close)
        axes[1].plot(real, 'r-')
    elif math_transform == '反正弦':
        real = ta.ASIN(close)
        axes[1].plot(real, 'r-')
    elif math_transform == '反正切':
        real = ta.ATAN(close)
        axes[1].plot(real, 'r-')
    elif math_transform == '向上取整':
        real = ta.CEIL(close)
        axes[1].plot(real, 'r-')
    elif math_transform == '余弦':
        real = ta.COS(close)
        axes[1].plot(real, 'r-')
    elif math_transform == '双曲余弦':
        real = ta.COSH(close)
        axes[1].plot(real, 'r-')
    elif math_transform == '指数':
        real = ta.EXP(close)
        axes[1].plot(real, 'r-')
    elif math_transform == '向下取整':
        real = ta.FLOOR(close)
        axes[1].plot(real, 'r-')
    elif math_transform == '自然对数':
        real = ta.LN(close)
        axes[1].plot(real, 'r-')
    elif math_transform == '常用对数':
        real = ta.LOG10(close)
        axes[1].plot(real, 'r-')
    elif math_transform == '正弦':
        real = ta.SIN(close)
        axes[1].plot(real, 'r-')
    elif math_transform == '双曲正弦':
        real = ta.SINH(close)
        axes[1].plot(real, 'r-')
    elif math_transform == '平方根':
        real = ta.SQRT(close)
        axes[1].plot(real, 'r-')
    elif math_transform == '正切':
        real = ta.TAN(close)
        axes[1].plot(real, 'r-')
    elif math_transform == '双曲正切':
        real = ta.TANH(close)
        axes[1].plot(real, 'r-')
        
    plt.show()

    
# 数学操作
def math_operator_process(event):
    print(event.widget.get())
    math_operator = event.widget.get()
    
    upperband, middleband, lowerband = ta.BBANDS(close, timeperiod=5, nbdevup=2, nbdevdn=2, matype=0)
    fig, axes = plt.subplots(2, 1, sharex=True)
    ax1, ax2 = axes[0], axes[1]
    axes[0].plot(close, 'rd-', markersize=3)
    axes[0].plot(upperband, 'y-')
    axes[0].plot(middleband, 'b-')
    axes[0].plot(lowerband, 'y-')
    axes[0].set_title(math_operator, fontproperties="SimHei")
    
    
    if math_operator == '指定的期间的最大值':
        real = ta.MAX(close, timeperiod=30)
        axes[1].plot(real, 'r-')
    elif math_operator == '指定的期间的最大值的索引':
        integer = ta.MAXINDEX(close, timeperiod=30)
        axes[1].plot(integer, 'r-')
    elif math_operator == '指定的期间的最小值':
        real = ta.MIN(close, timeperiod=30)
        axes[1].plot(real, 'r-')
    elif math_operator == '指定的期间的最小值的索引':
        integer = ta.MININDEX(close, timeperiod=30)
        axes[1].plot(integer, 'r-')
    elif math_operator == '指定的期间的最小和最大值':
        min, max = ta.MINMAX(close, timeperiod=30)
        axes[1].plot(min, 'r-')
        axes[1].plot(max, 'r-')
    elif math_operator == '指定的期间的最小和最大值的索引':
        minidx, maxidx = ta.MINMAXINDEX(close, timeperiod=30)
        axes[1].plot(minidx, 'r-')
        axes[1].plot(maxidx, 'r-')
    elif math_operator == '合计':
        real = ta.SUM(close, timeperiod=30)
        axes[1].plot(real, 'r-')
        
    plt.show()
    
    
root = tk.Tk()

# 第一行:重叠指标
rowframe1 = tk.Frame(root)
rowframe1.pack(side=tk.TOP, ipadx=3, ipady=3)
tk.Label(rowframe1, text="重叠指标").pack(side=tk.LEFT)

overlap_indicator = tk.StringVar() # 重叠指标
combobox1 = ttk.Combobox(rowframe1, textvariable=overlap_indicator)
combobox1['values'] = ['布林线','双指数移动平均线','指数移动平均线 ','希尔伯特变换——瞬时趋势线',
                       '考夫曼自适应移动平均线','移动平均线','MESA自适应移动平均','变周期移动平均线',
                       '简单移动平均线','三指数移动平均线(T3)','三指数移动平均线','三角形加权法 ','加权移动平均数']
combobox1.current(0)
combobox1.pack(side=tk.LEFT)

combobox1.bind('<<ComboboxSelected>>', overlap_process)


# 第二行:动量指标
rowframe2 = tk.Frame(root)
rowframe2.pack(side=tk.TOP, ipadx=3, ipady=3)
tk.Label(rowframe2, text="动量指标").pack(side=tk.LEFT)

momentum_indicator = tk.StringVar() # 动量指标
combobox2 = ttk.Combobox(rowframe2, textvariable=momentum_indicator)
combobox2['values'] = ['绝对价格振荡器','钱德动量摆动指标','移动平均收敛/散度','带可控MA类型的MACD',
                       '移动平均收敛/散度 固定 12/26','动量','比例价格振荡器','变化率','变化率百分比',
                       '变化率的比率','变化率的比率100倍','相对强弱指数','随机相对强弱指标','三重光滑EMA的日变化率']

combobox2.current(0)
combobox2.pack(side=tk.LEFT)

combobox2.bind('<<ComboboxSelected>>', momentum_process)



# 第三行:周期指标
rowframe3 = tk.Frame(root)
rowframe3.pack(side=tk.TOP, ipadx=3, ipady=3)
tk.Label(rowframe3, text="周期指标").pack(side=tk.LEFT)

cycle_indicator = tk.StringVar() # 周期指标
combobox3 = ttk.Combobox(rowframe3, textvariable=cycle_indicator)
combobox3['values'] = ['希尔伯特变换——主要的循环周期','希尔伯特变换——主要的周期阶段','希尔伯特变换——相量组件',
                       '希尔伯特变换——正弦曲线','希尔伯特变换——趋势和周期模式']

combobox3.current(0)
combobox3.pack(side=tk.LEFT)

combobox3.bind('<<ComboboxSelected>>', cycle_process)


# 第四行:统计功能
rowframe4 = tk.Frame(root)
rowframe4.pack(side=tk.TOP, ipadx=3, ipady=3)
tk.Label(rowframe4, text="统计功能").pack(side=tk.LEFT)

statistic_indicator = tk.StringVar() # 统计功能
combobox4 = ttk.Combobox(rowframe4, textvariable=statistic_indicator)
combobox4['values'] = ['贝塔系数;投资风险与股市风险系数','皮尔逊相关系数','线性回归','线性回归角度',
                       '线性回归截距','线性回归斜率','标准差','时间序列预测','方差']

combobox4.current(0)
combobox4.pack(side=tk.LEFT)

combobox4.bind('<<ComboboxSelected>>', statistic_process)


# 第五行:数学变换
rowframe5 = tk.Frame(root)
rowframe5.pack(side=tk.TOP, ipadx=3, ipady=3)
tk.Label(rowframe5, text="数学变换").pack(side=tk.LEFT)

math_transform = tk.StringVar() # 数学变换
combobox5 = ttk.Combobox(rowframe5, textvariable=math_transform_process)
combobox5['values'] = ['反余弦','反正弦','反正切','向上取整','余弦','双曲余弦','指数','向下取整',
                       '自然对数','常用对数','正弦','双曲正弦','平方根','正切','双曲正切']

combobox5.current(0)
combobox5.pack(side=tk.LEFT)

combobox5.bind('<<ComboboxSelected>>', math_transform_process)


# 第六行:数学操作
rowframe6 = tk.Frame(root)
rowframe6.pack(side=tk.TOP, ipadx=3, ipady=3)
tk.Label(rowframe6, text="数学操作").pack(side=tk.LEFT)

math_operator = tk.StringVar() # 数学操作
combobox6 = ttk.Combobox(rowframe6, textvariable=math_operator_process)
combobox6['values'] = ['指定期间的最大值','指定期间的最大值的索引','指定期间的最小值','指定期间的最小值的索引',
                       '指定期间的最小和最大值','指定期间的最小和最大值的索引','合计']

combobox6.current(0)
combobox6.pack(side=tk.LEFT)

combobox6.bind('<<ComboboxSelected>>', math_operator_process)




root.mainloop()
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值