C.Parsa’s Humongous Tree
题目大意:
有一棵树,每个节点上的权值可以在一个已知的区间取(lv≤av≤rv) (每个节点的区间可能不同),
数有一个美丽值,树的美定义为树的所有边(u,v)上的|au−av|之和。 求树的最大美丽值
输入格式
第一行包含整数t(1≤t≤250)-测试用例的数量。测试用例的描述如下。
每个测试用例的第一行包含单个整数n(2≤n≤1e5)-树中的顶点数。
下面n行中的第i行包含两个整数li和ri(1≤li≤ri≤1e9)。
接下来的n条−1行中的每一行都包含两个整数u和v(1≤u,v≤n,u≠v),这意味着在树的顶点u和v之间有一条边。
可以保证给定的图是一棵树。
可以保证所有测试用例上的n之和不超过2⋅1e5。
输出格式
对于每个测试用例,输出树的最大美丽值
input
3
2
1 6
3 8
1 2
3
1 3
4 6
7 9
1 2
2 3
6
3 14
12 20
12 19
2 12
10 17
3 17
3 2
6 5
1 5
2 6
4 6
output
7
8
62
一眼就能看出是树型DP,但是还是需要想一些东西的。
对于每个节点,取的值一定是区间的端点
因为如果该节点取的值位于上一个节点和下一个节点的值的中间,那么取包含区间内的所有值得到的结果都一样
假如上一个节点选了1
下一个节点选了5
当前节点可选的区间为[1,9]
那么[1,5]之内选任何数,结果都一样
为了方便,我们取边界
而另一部分,为了使结果最大,我们取最大的或者最小的,也是边界
对于[6,9]的数,为使结果最大,我们取最大的9
那么就可以开始DP了。
AC代码:
#include<bits/stdc++.h>
#define ll long long
using namespace std;
const int maxn=1e5+3;
int n;
ll l[maxn],r[maxn];
int tot;
struct e_node{
int to;
int next;
}e[maxn<<1];
int head[maxn];
ll dp[maxn][2];
void add_e(int u,int v){
e[++tot].to=v;
e[tot].next=head[u];
head[u]=tot;
}
void dfs(int u,int fa){
for(int i=head[u];i;i=e[i].next){
int v=e[i].to;
if(v==fa)continue;
dfs(v,u);//先跑子节点再计算,因为计算u节点需要用到子节点的dp值
//当前节点选左边界的情况,当v取左或右边界值,取最大值,同时加上v的dp值
dp[u][0]+=max(dp[v][0]+abs(l[u]-l[v]),dp[v][1]+abs(l[u]-r[v]));
//
//当前节点选右边界的情况
dp[u][1]+=max(dp[v][0]+abs(r[u]-l[v]),dp[v][1]+abs(r[u]-r[v]));
//
}
}
int main(){
int T;
scanf("%d",&T);
while(T--){
scanf("%d",&n);
tot=0;
memset(dp,0,sizeof(dp));
memset(head,0,sizeof(head));
for(int i=1;i<=n;++i)
scanf("%lld %lld",&l[i],&r[i]);
for(int i=1;i<=n-1;++i){
int u,v;
scanf("%d %d",&u,&v);
add_e(u,v);
add_e(v,u);//双向边
}
dfs(1,0);//默认1为根节点
printf("%lld\n",max(dp[1][0],dp[1][1]));
//答案在数的根节点选左边界或者右边界的情况中取最大值
}
return 0;
}