Codeforces Round #722(Div. 2)C

C.Parsa’s Humongous Tree

原题链接


题目大意:
有一棵树,每个节点上的权值可以在一个已知的区间取(lv≤av≤rv) (每个节点的区间可能不同),
数有一个美丽值,树的美定义为树的所有边(u,v)上的|au−av|之和。 求树的最大美丽值

输入格式
第一行包含整数t(1≤t≤250)-测试用例的数量。测试用例的描述如下。
每个测试用例的第一行包含单个整数n(2≤n≤1e5)-树中的顶点数。

下面n行中的第i行包含两个整数li和ri(1≤li≤ri≤1e9)。
接下来的n条−1行中的每一行都包含两个整数u和v(1≤u,v≤n,u≠v),这意味着在树的顶点u和v之间有一条边。

可以保证给定的图是一棵树。
可以保证所有测试用例上的n之和不超过2⋅1e5。

输出格式
对于每个测试用例,输出树的最大美丽值

input
3
2
1 6
3 8
1 2
3
1 3
4 6
7 9
1 2
2 3
6
3 14
12 20
12 19
2 12
10 17
3 17
3 2
6 5
1 5
2 6
4 6
output
7
8
62


一眼就能看出是树型DP,但是还是需要想一些东西的。

对于每个节点,取的值一定是区间的端点

因为如果该节点取的值位于上一个节点和下一个节点的值的中间,那么取包含区间内的所有值得到的结果都一样
假如上一个节点选了1
下一个节点选了5
当前节点可选的区间为[1,9]
那么[1,5]之内选任何数,结果都一样
为了方便,我们取边界

而另一部分,为了使结果最大,我们取最大的或者最小的,也是边界
对于[6,9]的数,为使结果最大,我们取最大的9

那么就可以开始DP了。

AC代码:

#include<bits/stdc++.h>
#define ll long long 
using namespace std;
const int maxn=1e5+3;
int n;
ll l[maxn],r[maxn];
int tot;
struct e_node{
	int to;
	int next;
}e[maxn<<1];
int head[maxn];
ll dp[maxn][2];
void add_e(int u,int v){
	e[++tot].to=v;
	e[tot].next=head[u];
	head[u]=tot;
}
void dfs(int u,int fa){
	for(int i=head[u];i;i=e[i].next){
		int v=e[i].to;
		if(v==fa)continue;
		dfs(v,u);//先跑子节点再计算,因为计算u节点需要用到子节点的dp值
		//当前节点选左边界的情况,当v取左或右边界值,取最大值,同时加上v的dp值
		dp[u][0]+=max(dp[v][0]+abs(l[u]-l[v]),dp[v][1]+abs(l[u]-r[v]));
		//
		//当前节点选右边界的情况
		dp[u][1]+=max(dp[v][0]+abs(r[u]-l[v]),dp[v][1]+abs(r[u]-r[v]));
		//
	}
}
int main(){
	int T;
	scanf("%d",&T);
	while(T--){
		scanf("%d",&n);
		tot=0;
		memset(dp,0,sizeof(dp));
		memset(head,0,sizeof(head));
		for(int i=1;i<=n;++i)
			scanf("%lld %lld",&l[i],&r[i]);
		for(int i=1;i<=n-1;++i){
			int u,v;
			scanf("%d %d",&u,&v);
			add_e(u,v);
			add_e(v,u);//双向边
		}
		dfs(1,0);//默认1为根节点
		printf("%lld\n",max(dp[1][0],dp[1][1]));
		//答案在数的根节点选左边界或者右边界的情况中取最大值
	}
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值