计算机语言的原码、反码、补码的最简理解

        这篇博客源自于一个有趣的实例:

int main(){
	int a = 4;
	a = ~a;
	printf("%d",a);
	return 0;
} 

        如上所示,最终程序的结果会输出-5。

        为什么呢,在我们的认知中:

       按位取反得到的结果应该是:

4    =>   1 0 0 

取反:   0 1 1

        结果应该是3才对,怎么也不会至于是负数,也不会是5呀?

        实际上,在计算机中,只有加法器而无减法器。

        因此,引入了原码、反码、补码的概念,以将相应的减法运算如6-2定义为6+(-2)的形式,以方便进行运算。至此,在计算机的符号数值计算中,都是使用“补码”进行运算的,那么首先,我们就要知道原码、反码、补码的概念。

        原码、反码、补码的概念,都是为解决负数运算的问题,因此,正数之间的运算往往不会涉及这个领域,正数的原码、反码、补码都是其本身。以下,本文主要讨论负数的原码、反码、补码的概念。

        网络上的概念较为复杂,在这里,笔者通过举例的方式方便小伙伴们理解这三者的区别和运算关系。

 1、原码

        常规理解中,4转换为2进制为:

1 0 0

        因为参与的是符号数值的运算,因此会在原码中加上一符号位。

        在原码中,只需要在最高位加上符号位即可,正数的符号位为0,负数的符号位为1。

        因此,存在:

-4 => 1 1 0 0

2、反码

        除符号位之外,将原码中的1变0,0变1,即可获得对应的反码。即有:

-4 => 1 0 1 1(反码)

3、补码

        负数在反码的基础上+1,可以得到数的补码,即:

-4  => 1 1 0 0(补码)

Tips:1)正数的补码、反码、原码都是其本身(加上符号位)

        2)将补码再次取一次补码,即是原码。(补码的补码为原码)

        如上所述,在计算机符号数值的计算中,计算机都是采用补码进行运算的,因此,在代码中,4进行的按位取反的实际运算是:

4          =>  0 1 0 0(补码)

按位取反:1 0 1 1(补码)【1】

        计算机最终处理的结果为【1】式,但其在呈现的时候,需要以原码(真实数据)的形式,呈递给操作员,因此,我们需要将【1】式转换为原码,以获得真实的结果。

        如上文所述,将【1】式视为"原码"取一次补码,即可获得【1】式的原码。

        1)"原码":1 0 1 1

        2)反码:   1 1 0 0

        3)补码:   1 1 0 1 (由于符号数为1,为负数,需要进行+1操作)

        可得输出的数为1 1 0 1,即-5。

———————————————————————————————————————————

        本文感谢我的小伙伴 @我想月薪过万 的指导^-^(欢迎大家浏览小伙伴的csdn博客)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

我想脱离小码农

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值