这篇博客源自于一个有趣的实例:
int main(){
int a = 4;
a = ~a;
printf("%d",a);
return 0;
}
如上所示,最终程序的结果会输出-5。
为什么呢,在我们的认知中:
按位取反得到的结果应该是:
4 => 1 0 0
取反: 0 1 1
结果应该是3才对,怎么也不会至于是负数,也不会是5呀?
实际上,在计算机中,只有加法器而无减法器。
因此,引入了原码、反码、补码的概念,以将相应的减法运算如6-2定义为6+(-2)的形式,以方便进行运算。至此,在计算机的符号数值计算中,都是使用“补码”进行运算的,那么首先,我们就要知道原码、反码、补码的概念。
原码、反码、补码的概念,都是为解决负数运算的问题,因此,正数之间的运算往往不会涉及这个领域,正数的原码、反码、补码都是其本身。以下,本文主要讨论负数的原码、反码、补码的概念。
网络上的概念较为复杂,在这里,笔者通过举例的方式方便小伙伴们理解这三者的区别和运算关系。
1、原码
常规理解中,4转换为2进制为:
1 0 0
因为参与的是符号数值的运算,因此会在原码中加上一符号位。
在原码中,只需要在最高位加上符号位即可,正数的符号位为0,负数的符号位为1。
因此,存在:
-4 => 1 1 0 0
2、反码
除符号位之外,将原码中的1变0,0变1,即可获得对应的反码。即有:
-4 => 1 0 1 1(反码)
3、补码
负数在反码的基础上+1,可以得到数的补码,即:
-4 => 1 1 0 0(补码)
Tips:1)正数的补码、反码、原码都是其本身(加上符号位)
2)将补码再次取一次补码,即是原码。(补码的补码为原码)
如上所述,在计算机符号数值的计算中,计算机都是采用补码进行运算的,因此,在代码中,4进行的按位取反的实际运算是:
4 => 0 1 0 0(补码)
按位取反:1 0 1 1(补码)【1】
计算机最终处理的结果为【1】式,但其在呈现的时候,需要以原码(真实数据)的形式,呈递给操作员,因此,我们需要将【1】式转换为原码,以获得真实的结果。
如上文所述,将【1】式视为"原码"取一次补码,即可获得【1】式的原码。
1)"原码":1 0 1 1
2)反码: 1 1 0 0
3)补码: 1 1 0 1 (由于符号数为1,为负数,需要进行+1操作)
可得输出的数为1 1 0 1,即-5。
———————————————————————————————————————————
本文感谢我的小伙伴 @我想月薪过万 的指导^-^(欢迎大家浏览小伙伴的csdn博客)