【2021-CVPR】clDice - a Novel Topology-Preserving Loss Function for Tubular Structure Segmentation

文章提出clDice函数,用于衡量管状网络结构如血管、道路的语义分割掩膜与其拓扑骨架的重合度,确保了拓扑关系的保留。基于此,作者设计了一个高效的、可微分的soft-clDice损失函数,适用于各种语义分割网络的训练,实验表明能提高连通性信息的准确性,增强图形相似性和体积分数的分割性能。
摘要由CSDN通过智能技术生成

概述

针对管状网络形的血管、道路等目标的语义分割,提出了一个新的基于中心线的clDice函数,计算的是语义分割掩膜和它们的拓扑骨架的重合度。证明了clDice可以保持拓扑关系。并基于此,提出了一个高计算效率、可微分的损失函数(soft-clDice),它可用于任意语义分割网络的训练。实验结果表明其有更准确的连通性信息,更高的图形相似性和更好的体积分数的分割。

总结

  • 创新点:
    • 1.针对管状成网络形的目标,保留了其拓扑关系,进行了证明
    • 2.可应用于任何语义分割网络的损失函数
  • 不足:
  • 分析:
  • 结论:

1. Introduction

保留拓扑精度对于一些任务很重要,比如对血管分割来分析血流。目前针对管状曲线结构的语义分网络,常用的两个定量评估标准为:1)基于重叠的度量,例如Dice;2)基于体积距离度量。目前大多问题关注点为局部管状结构全局形成的网络,二者之中最重要的是全局网络拓扑的连通性。以血管数据为例,对全局平均损失的训练会导致对大血管的体积分割的强烈偏向。(如下紫色区域相对于红色区域)
在这里插入图片描述
针对二值几何图形,根据不同的拓扑定义,基于细化和中间区的各种算法已证明是可以保留拓扑关系的。然而目前还没提出端到端的损失函数。本文借此提出了一种新的连接感知相似性度量clDice,用于训练管状分割算法,公式基于形态学骨架,主要看拓扑结构而非平均加权每个体素,实验证明本文方法可应用于2D和3D网路,有很强的实用性。

2. 强调连通性

需要两个二值图:真值图 V L V_L VL,预测的分割结果 V P V_P VP。首先分别从两张图中提出骨架 S L S_L SL S P S_P SP;接下来计算 S P S_P SP V L V_L VL中的分数,这里叫做拓扑精度Tprec( S P S_P SP, V L V_L VL),同样地计算 S L S_L SL V P V_P VP中的分数,并称之为拓扑灵敏度(召回率recall)Tprec( S L S_L SL, V P V_P VP)。在预测过程中,拓扑精度容易出现假阳性,拓扑灵敏度容易出现假阴性,所以这么叫。
在这里插入图片描述
为了最大化精度和灵敏度(召回率),我们的clDice如下定义
在这里插入图片描述

3. clDice的拓扑保证

保持拓扑关系的理论证明

4. 使用clDice训练网络

4.1 使用软骨架化的Soft-clDice

得可微,用于损失函数就得可微。常用的方法有欧拉距离转换和形态学细化,欧拉距离转换有时不连续,所以使用形态学的细化。本文据此提出软骨架化,迭代使用最大最小池化来代替形态学操作中的膨胀和腐蚀。算法1所示为骨架化迭代过程:

  • 超参数 k 表示骨架化的迭代次数,必须大于等于观察到的管状结构最大半径(像素),具体依赖于实验所用数据集,更大的k并不会降低效果但会增加计算时间,太小的k则不能完全提取出骨架
  • 超参数 I 表示掩膜图像
    在这里插入图片描述
    下图为骨架化的一个连续过程示意,在早期的迭代中,具有小半径的结构被骨架化并被保留,直到较厚的结构被骨架化的后期迭代,这使得可以提取无参数的、形态学驱动的软骨架,最后使得clDice成为可微分、实值、可优化的度量
    在这里插入图片描述

算法2表示soft-clDice的执行过程,与Dice、交叉熵等函数不同的是,clDice只考虑前景目标提取出的骨架,这使得它对异常值和噪声具有鲁棒性。

  • 超参数 V P V_P VP 表示语义分割网络的实值概率预测
  • 超参数 V L V_L VL 表示真值掩膜

在这里插入图片描述

4.2 损失函数

本文的目标是在实现精确分割的同时保持拓扑而非学习骨架,因此把soft-clDice和soft-Dice用如下方法综合起来考虑。其中 α ∈ [ 0 , 0.5 ] \alpha \in[0,0.5] α[0,0.5]:与已有方法形成了鲜明对比,已有方法将分割和中心线预测作为多任务联合学习,而本只对保持拓扑结构的分割感兴趣,对中心线的学习没兴趣。
在这里插入图片描述
训练流程如下
在这里插入图片描述

  1. 首先对原图使用分割网络得到粗略分割概率图;
  2. 再分别对实际结果(Actual Mask)和预测结果(Predicted Mask)提取骨架;
  3. 最后根据soft-clDice的计算公式计算soft-clDice,与soft-Dice结合得到损失函数,进行模型训练

4.3 适应高度不平衡的数据

证明时说了是前景和背景,但在实验中,对于复杂和高度不平衡的数据集,在未充分代表的前景上计算clDice也是足够的

5. 实验

5.1数据集 5.2评估标准 5.3结果和讨论
定量:任意比例下的soft-clDice针对所有2D和3D数据集都提高了拓扑的、体积的和图形的相似性, α \alpha α可作为一个超参数以适应不同的数据集,增加 α \alpha α可提高拓扑性度量。soft-clDice对类似的二元分割任务有很大的适用性,可部署到任意网络的架构
在这里插入图片描述
定性
在这里插入图片描述

6. Conclusive Remarks

提出clDice,一种新的可保持拓扑特性的相似性度量,用于管状结构的分割。并对此进行了理论证明。然后在损失函数中使用clDice的可微分版本soft-clDice训练网络,结果证明挺好的,计算效率高,可迁移到其他网络上。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值