概述
针对管状网络形的血管、道路等目标的语义分割,提出了一个新的基于中心线的clDice函数,计算的是语义分割掩膜和它们的拓扑骨架的重合度。证明了clDice可以保持拓扑关系。并基于此,提出了一个高计算效率、可微分的损失函数(soft-clDice),它可用于任意语义分割网络的训练。实验结果表明其有更准确的连通性信息,更高的图形相似性和更好的体积分数的分割。
总结
- 创新点:
- 1.针对管状成网络形的目标,保留了其拓扑关系,进行了证明
- 2.可应用于任何语义分割网络的损失函数
- 不足:
- 分析:
- 结论:
1. Introduction
保留拓扑精度对于一些任务很重要,比如对血管分割来分析血流。目前针对管状曲线结构的语义分网络,常用的两个定量评估标准为:1)基于重叠的度量,例如Dice;2)基于体积距离度量。目前大多问题关注点为局部管状结构和全局形成的网络,二者之中最重要的是全局网络拓扑的连通性。以血管数据为例,对全局平均损失的训练会导致对大血管的体积分割的强烈偏向。(如下紫色区域相对于红色区域)
针对二值几何图形,根据不同的拓扑定义,基于细化和中间区的各种算法已证明是可以保留拓扑关系的。然而目前还没提出端到端的损失函数。本文借此提出了一种新的连接感知相似性度量clDice,用于训练管状分割算法,公式基于形态学骨架,主要看拓扑结构而非平均加权每个体素,实验证明本文方法可应用于2D和3D网路,有很强的实用性。
2. 强调连通性
需要两个二值图:真值图
V
L
V_L
VL,预测的分割结果
V
P
V_P
VP。首先分别从两张图中提出骨架
S
L
S_L
SL和
S
P
S_P
SP;接下来计算
S
P
S_P
SP在
V
L
V_L
VL中的分数,这里叫做拓扑精度Tprec(
S
P
S_P
SP,
V
L
V_L
VL),同样地计算
S
L
S_L
SL在
V
P
V_P
VP中的分数,并称之为拓扑灵敏度(召回率recall)Tprec(
S
L
S_L
SL,
V
P
V_P
VP)。在预测过程中,拓扑精度容易出现假阳性,拓扑灵敏度容易出现假阴性,所以这么叫。
为了最大化精度和灵敏度(召回率),我们的clDice如下定义
3. clDice的拓扑保证
保持拓扑关系的理论证明
4. 使用clDice训练网络
4.1 使用软骨架化的Soft-clDice
得可微,用于损失函数就得可微。常用的方法有欧拉距离转换和形态学细化,欧拉距离转换有时不连续,所以使用形态学的细化。本文据此提出软骨架化,迭代使用最大最小池化来代替形态学操作中的膨胀和腐蚀。算法1所示为骨架化迭代过程:
- 超参数 k 表示骨架化的迭代次数,必须大于等于观察到的管状结构最大半径(像素),具体依赖于实验所用数据集,更大的k并不会降低效果但会增加计算时间,太小的k则不能完全提取出骨架
- 超参数 I 表示掩膜图像
下图为骨架化的一个连续过程示意,在早期的迭代中,具有小半径的结构被骨架化并被保留,直到较厚的结构被骨架化的后期迭代,这使得可以提取无参数的、形态学驱动的软骨架,最后使得clDice成为可微分、实值、可优化的度量
算法2表示soft-clDice的执行过程,与Dice、交叉熵等函数不同的是,clDice只考虑前景目标提取出的骨架,这使得它对异常值和噪声具有鲁棒性。
- 超参数 V P V_P VP 表示语义分割网络的实值概率预测
- 超参数 V L V_L VL 表示真值掩膜
4.2 损失函数
本文的目标是在实现精确分割的同时保持拓扑而非学习骨架,因此把soft-clDice和soft-Dice用如下方法综合起来考虑。其中
α
∈
[
0
,
0.5
]
\alpha \in[0,0.5]
α∈[0,0.5]:与已有方法形成了鲜明对比,已有方法将分割和中心线预测作为多任务联合学习,而本只对保持拓扑结构的分割感兴趣,对中心线的学习没兴趣。
训练流程如下
- 首先对原图使用分割网络得到粗略分割概率图;
- 再分别对实际结果(Actual Mask)和预测结果(Predicted Mask)提取骨架;
- 最后根据soft-clDice的计算公式计算soft-clDice,与soft-Dice结合得到损失函数,进行模型训练
4.3 适应高度不平衡的数据
证明时说了是前景和背景,但在实验中,对于复杂和高度不平衡的数据集,在未充分代表的前景上计算clDice也是足够的
5. 实验
5.1数据集 5.2评估标准 5.3结果和讨论
定量:任意比例下的soft-clDice针对所有2D和3D数据集都提高了拓扑的、体积的和图形的相似性,
α
\alpha
α可作为一个超参数以适应不同的数据集,增加
α
\alpha
α可提高拓扑性度量。soft-clDice对类似的二元分割任务有很大的适用性,可部署到任意网络的架构
定性
6. Conclusive Remarks
提出clDice,一种新的可保持拓扑特性的相似性度量,用于管状结构的分割。并对此进行了理论证明。然后在损失函数中使用clDice的可微分版本soft-clDice训练网络,结果证明挺好的,计算效率高,可迁移到其他网络上。