论文阅读:GLOBAL PROTOTYPE ENCODING FOR INCREMENTALVIDEO HIGHLIGHTS DETECTION

本文提出了一种名为全局原型编码 (GPE) 的新型视频亮点检测方法,以解决现有方法在增量学习环境中的局限性。GPE 通过参数化原型逐步学习新亮点领域,同时保留旧知识。为了推动这一研究,作者创建了一个包含 5,100 多个现场美食视频的精细注释数据集 LiveFood,涵盖烹饪、饮食、配料和展示四个领域。实验表明,GPE 在 LiveFood 数据集上超越了流行的方法,实现了显著的 mAP 改善,有效证明了 GPE 的优越性。" 120593734,10749515,使用百度地图API创建地图并弹窗,"['百度', '前端开发', 'HTML', '地图服务']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

摘要:

视频亮点检测 (VHD) 是计算机视觉中的一个活跃研究领域,旨在在给定原始视频输入的情况下定位最吸引用户的片段。然而,大多数 VHD 方法都是基于封闭世界假设,即预先定义固定数量的高亮类别,并且所有训练数据都是预先可用的。因此,现有方法在增加高亮域和训练数据方面的可扩展性较差。为了解决上述问题,我们提出了一种名为全局原型编码 (GPE) 的新型视频亮点检测方法,通过参数化原型逐步学习以适应新领域。为了促进这一新的研究方向,我们收集了一个名为 LiveFood 的精细注释数据集,包括超过 5,100 个现场美食视频,由四个领域组成:烹饪、饮食、配料和展示。据我们所知,这是第一个在增量学习环境中探索视频亮点检测的工作,开辟了将 VHD 应用于实际场景的新领域,其中相关的亮点领域和训练数据都随着时间的推移而增加。我们通过广泛的实验证明了 GPE 的有效性。值得注意的是,GPE 在 LiveFood 上超越了流行的领域增量学习方法,在所有领域都实现了显着的 mAP 改进。代码和数据集将公开提供。

引言:

带有摄像头的便携式设备的普及极大地促进了在线视频的创作和传播。这些足够的视频数据作为相关研究的必要前提,例如。视频摘要 ,视频亮点检测 (VHD) 和视频时刻定位。目前,大多数VHD方法都是在封闭世界假设下开发的ÿ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

城南皮卡丘

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值