题目
资源限制
时间限制:1.0s 内存限制:256.0MB
问题描述
小明喜欢在一个围棋网站上找别人在线对弈。这个网站上所有注册用户都有一个积分,代表他的围棋水平。
小明发现网站的自动对局系统在匹配对手时,只会将积分差恰好是K的两名用户匹配在一起。如果两人分差小于或大于K,系统都不会将他们匹配。
现在小明知道这个网站总共有N名用户,以及他们的积分分别是A1, A2, … AN。
小明想了解最多可能有多少名用户同时在线寻找对手,但是系统却一场对局都匹配不起来(任意两名用户积分差不等于K)?
输入格式
第一行包含两个个整数N和K。
第二行包含N个整数A1, A2, … AN。
对于30%的数据,1 <= N <= 10
对于100%的数据,1 <= N <= 100000, 0 <= Ai <= 100000, 0 <= K <= 100000
输出格式
一个整数,代表答案。
样例输入
10 0
1 4 2 8 5 7 1 4 2 8
样例输出
6
由于思路比较复杂,画图比较清晰。
**
AC代码(注释的相当清晰)
#include <bits/stdc++.h>//c++里比较流氓的函数库
using namespace std;
const int mx = 1e5+5;//开的最大空间(空间要求宽松)
int c[mx];//计数器
int d[mx];//动态规划用的
int main (){
int n,k,sum=0,val,MAX=0;
cin>>n>>k;
memset(d,0,sizeof d);//初始化数组
for(int i=1;i<=n;i++){
cin>>val;
c[val]++;
d[val]++;
if(c[val]==1)
sum++;//统计共有多少的不同积分
MAX=max(MAX,val);//记录最大积分
}
if(k==0){//如果k==0,结果是所有不同积分的数目
cout<<sum<<endl;
}
else{//如果k!=0, 结果用动态规划解决
sum=0; //sum 用于表示到目前为止最大的取值
for(int i=0;i<k;i++){
int j;
for(j=i;j<=MAX;j+=k){
if(j-2*k>=0){//表示在2k之后的规划
d[j] = max(d[j-k],d[j-2*k]+c[j]);
}
else//在1~k k+1~2k 间取最大值
d[j]=max(d[j],d[j-k]);
}
sum+=d[j-k];//j最终取值大于MAX,错一个k回来
}
cout<<sum<<endl;
}
}
**
动态规划问题是比较经典的问题,比较难解释在下面再出比较好的链接
动态规划