蓝桥杯-对局匹配 (动态规划问题)详解

题目
资源限制
时间限制:1.0s 内存限制:256.0MB
问题描述
  小明喜欢在一个围棋网站上找别人在线对弈。这个网站上所有注册用户都有一个积分,代表他的围棋水平。

小明发现网站的自动对局系统在匹配对手时,只会将积分差恰好是K的两名用户匹配在一起。如果两人分差小于或大于K,系统都不会将他们匹配。

现在小明知道这个网站总共有N名用户,以及他们的积分分别是A1, A2, … AN。

小明想了解最多可能有多少名用户同时在线寻找对手,但是系统却一场对局都匹配不起来(任意两名用户积分差不等于K)?
输入格式
  第一行包含两个个整数N和K。
  第二行包含N个整数A1, A2, … AN。

对于30%的数据,1 <= N <= 10
  对于100%的数据,1 <= N <= 100000, 0 <= Ai <= 100000, 0 <= K <= 100000
输出格式
  一个整数,代表答案。
样例输入
10 0
1 4 2 8 5 7 1 4 2 8
样例输出
6

在这里插入图片描述
由于思路比较复杂,画图比较清晰。

**

AC代码(注释的相当清晰)

#include <bits/stdc++.h>//c++里比较流氓的函数库 
using namespace std;

const int mx = 1e5+5;//开的最大空间(空间要求宽松) 
int c[mx];//计数器 
int d[mx];//动态规划用的

int main (){
	int n,k,sum=0,val,MAX=0;
	cin>>n>>k;
	memset(d,0,sizeof d);//初始化数组
	for(int i=1;i<=n;i++){
		cin>>val;
		c[val]++;
		d[val]++;
		if(c[val]==1)
			sum++;//统计共有多少的不同积分 
		MAX=max(MAX,val);//记录最大积分 
	} 
	if(k==0){//如果k==0,结果是所有不同积分的数目 
		cout<<sum<<endl;
	}
	else{//如果k!=0, 结果用动态规划解决
		sum=0; //sum 用于表示到目前为止最大的取值 
		for(int i=0;i<k;i++){
			int j;
			for(j=i;j<=MAX;j+=k){
				if(j-2*k>=0){//表示在2k之后的规划 
					d[j] = max(d[j-k],d[j-2*k]+c[j]);		
				}
				else//在1~k   k+1~2k 间取最大值 
				d[j]=max(d[j],d[j-k]);				
			}
			sum+=d[j-k];//j最终取值大于MAX,错一个k回来
		} 
		cout<<sum<<endl;	 
	}
	
} 

**

动态规划问题是比较经典的问题,比较难解释在下面再出比较好的链接
动态规划

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值