语音信号处理 | 傅里叶变换、短时傅里叶变换、小波变换、希尔伯特变换、希尔伯特黄变换

本文深入介绍了信号处理领域的五大核心变换:傅里叶变换、短时傅里叶变换、小波变换、希尔伯特变换及希尔伯特黄变换,对比分析了各变换的特点与适用场景,尤其针对非平稳信号的时频分析进行了详尽阐述。

在信号处理领域,存在诸多变换,比如标题中的五个变换。本文将对这五个变换进行介绍和比较。在开始之前,我们需要先理清什么是平稳信号,什么是非平稳信号。

我们知道,自然界中几乎所有信号都是非平稳信号,比如我们的语音信号就是典型的非平稳信号。那么何谓平稳信号和非平稳信号呢?一个通俗的理解即,平稳信号在不同时间得到的采样值的统计特性(比如期望、方差等)是相同的,非平稳信号则与之相反,其特性会随时间变化。在信号处理中,这个特性通常指频率。

通常傅里叶变换只适合处理平稳信号,对于非平稳信号,由于频率特性会随时间变化,为了捕获这一时变特性,我们需要对信号进行时频分析,就包括短时傅里叶变换小波变换希尔伯特变换希尔伯特黄变换这几种变换。以下逐一进行分析介绍。

傅里叶变换(Fourier Transform, FT)


首先考虑一个连续信号 f ( t ) f(t) f(t)的傅里叶变换和它的反变换,如下
F ( ω ) = F [ f ( t ) ] = ∫ − ∞ + ∞ f ( t ) e − j ω t d t F(\omega)=F[f(t)]=\int_{-\infty}^{+\infty}f(t)e^{-j\omega t}dt F(ω)=F[f(t)]=+f(t)etdt

f ( t ) = F − 1 [ F ( ω ) ] = 1 2 π ∫ − ∞ + ∞ F ( ω ) e j ω t d ω f(t)=F^{-1}[F(\omega)]=\frac{1}{2\pi}\int_{-\infty}^{+\infty}F(\omega)e^{j\omega t}d\omega f(t)=F1[F(ω)]=2π1+F(ω)etdω

在实际应用中,计算机只能处理离散信号,所以对连续信号 x ( t ) x(t) x(t)进行时域采样,得到一组离散样本 x ( n ) x(n) x(n),对它进行傅里叶变换得到
X ( ω ) = ∑ n = − ∞ ∞ x ( n ) e − j ω n X(\omega)=\sum\limits_{n=-\infty}^\infty x(n)e^{-j\omega n} X(ω)=n=x(n)ejωn
上式即为离散时间傅里叶变换(DTFT),由于变换后得到的频域值仍然是连续的,我们继续对频域进行采样,得到
X ( k ) = ∑ n = 0 N − 1 x ( n ) e − j 2 π k n N X(k)=\sum\limits_{n=0}^{N-1}x(n)e^{-j\frac{2πkn}{N}} X(k)=n=0N1

评论 16
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值