战略游戏
题目描述
Bob喜欢玩电脑游戏,特别是战略游戏。但是他经常无法找到快速玩过游戏的办法。现在他有个问题。
他要建立一个古城堡,城堡中的路形成一棵树。他要在这棵树的结点上放置最少数目的士兵,使得这些士兵能了望到所有的路。
注意,某个士兵在一个结点上时,与该结点相连的所有边将都可以被了望到。
请你编一程序,给定一树,帮Bob计算出他需要放置最少的士兵.
输入输出格式
输入格式:
第一行 N,表示树中结点的数目。
第二行至第N+1行,每行描述每个结点信息,依次为:该结点标号i,k(后面有k条边与结点I相连)。
接下来k个数,分别是每条边的另一个结点标号r1,r2,…,rk。
对于一个n(0<n<=1500)个结点的树,结点标号在0到n-1之间,在输入数据中每条边只出现一次。
输出格式:
输出文件仅包含一个数,为所求的最少的士兵数目。
dp方程:
状态:f[i][0]表示该点不放,f[i][1]表示该点要放
f[u][0]+=f[to][1];
f[u][1]+=min(f[to][1],f[to][0]);
#include<bits/stdc++.h>
using namespace std;
const int maxn=1500+5,maxm=3000+5;
int f[maxn][2];
int head[maxn];
int n;
struct edge
{
int to,next;
}e[maxm];
int size=0;
void addedge(int u,int v)
{
e[++size].to=v;
e[size].next=head[u];
head[u]=size;
}
inline int read()
{
int x=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=(x<<3)+(x<<1)+ch-'0';ch=getchar();}
return x*f;
}
void dp(int u,int fa)
{
f[u][0]=0;f[u][1]=1;
for(int i=head[u];i;i=e[i].next)
{
int to=e[i].to;
if(to==fa)continue;
dp(to,u);
f[u][0]+=f[to][1];
f[u][1]+=min(f[to][1],f[to][0]);
}
}
int main()
{
n=read();
for(int i=1;i<=n;i++)
{
int a=read(),k=read();
for(int j=1;j<=k;j++)
{
int b=read();
addedge(a,b);
addedge(b,a);
}
dp(0,-1);
}
printf("%d\n",min(f[0][0],f[0][1]));
return 0;
}
Longest path in a tree(求树的直径)
题目描述
给你一个无权无向的树。编写程序以输出该树中最长路径(从一个节点到另一个节点)的长度。在这种情况下,路径的长度是我们从开始到目的地的遍历边数。
输入输出格式 输入格式:
输入文件的第一行包含一个整数N —树中的节点数(0 < N <= 10000)。接下来N -1行包含该树的N -1个边—每行包含一对(u,v),表示在节点u和节点v之间存在边(1 <= u,v <= N)。
输出格式:
一行:输出最长路径的长度。
dp方程
状态设计: f[u][1]表示到最长路,f[u][2]表示次长路;
#include<bits/stdc++.h>
using namespace std;
const int maxn=10000+5,maxm=20000+5;
int f[maxn][2];
int head[maxn];
int size=0,n,ans=0;
struct edge
{
int to,next;
}e[maxm];
void addedge(int u,int v)
{
e[++size].to=v;
e[size].next=head[u];
head[u]=size;
}
inline int read()
{
int x=0,f=1;char ch=getchar();
while(ch>'9'||ch<'0'){if(f=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=(x<<3)+(x<<1)+ch-'0';ch=getchar();}
return x*f;
}
void dp(int u,int fa)
{
f[u][0]=0;f[u][1]=0;
for(int i=head[u];i;i=e[i].next)
{
int to=e[i].to;
if(to==fa)continue;
dp(to,u);
int dis=f[to][0]+1;
if(f[u][0]<dis)
{
f[u][1]=f[u][0];
f[u][0]=dis;
}
else if(f[u][1]<dis)
f[u][1]=dis;
}
ans=max(ans,f[u][0]+f[u][1]);
}
int main()
{
n=read();
for(int i=1;i<n;i++)
{
int a=read(),b=read();
addedge(a,b);
addedge(b,a);
}
dp(1,0);
printf("%d",ans);
exit(0);
}
二叉苹果树
题目描述
有一棵苹果树,如果树枝有分叉,一定是分2叉(就是说没有只有1个儿子的结点)
这棵树共有N个结点(叶子点或者树枝分叉点),编号为1-N,树根编号一定是1。
我们用一根树枝两端连接的结点的编号来描述一根树枝的位置。下面是一颗有4个树枝的树
2 5
\ /
3 4
\ /
1
现在这颗树枝条太多了,需要剪枝。但是一些树枝上长有苹果。
给定需要保留的树枝数量,求出最多能留住多少苹果。
输入输出格式
输入格式:
第1行2个数,N和Q(1<=Q<= N,1<N<=100)。
N表示树的结点数,Q表示要保留的树枝数量。接下来N-1行描述树枝的信息。
每行3个整数,前两个是它连接的结点的编号。第3个数是这根树枝上苹果的数量。
每根树枝上的苹果不超过30000个。
输出格式:
一个数,最多能留住的苹果的数量。
dp方程:
状态f[i][k]经过i号节点保留k节点
#include<bits/stdc++.h>
using namespace std;
const int maxn=100+50;
int t[maxn];//存边数
struct edge
{
int to,next,val;
}e[maxn<<1];
int n,q,size=0;
int head[maxn],f[maxn][maxn];//经过i号节点保留k节点
inline int read()
{
int x=0,f=1;char ch=getchar();
while(ch>'9'||ch<'0'){if(ch=='-')f=-1;ch=getchar();}
while(ch<='9'&&ch>='0'){x=(x<<3)+(x<<1)+ch-'0';ch=getchar();}
return x*f;
}
void addedge(int u,int v,int w)
{
e[++size].to=v;
e[size].val=w;
e[size].next=head[u];
head[u]=size;
}
void dfs(int u,int fa)
{
for(int i=head[u];i;i=e[i].next)
{
int to=e[i].to;
if(to==fa)continue;
dfs(to,u);
t[u]+=t[to]+1;
for(int j=min(t[u],q);j>=1;j--)//当前节点留的边数
for(int k=min(t[to],j-1);k>=0;k--)//子树的边数
f[u][j]=max(f[u][j],f[u][j-k-1]+f[to][k]+e[i].val);
}
}
int main()
{
n=read();q=read();
for(int i=1;i<=n-1;i++)
{
int u=read(),v=read(),w=read();
addedge(u,v,w);
addedge(v,u,w);
}
dfs(1,0);
printf("%d",f[1][q]);
return 0;
}