树形dp总结

战略游戏
题目描述

Bob喜欢玩电脑游戏,特别是战略游戏。但是他经常无法找到快速玩过游戏的办法。现在他有个问题。

他要建立一个古城堡,城堡中的路形成一棵树。他要在这棵树的结点上放置最少数目的士兵,使得这些士兵能了望到所有的路。

注意,某个士兵在一个结点上时,与该结点相连的所有边将都可以被了望到。

请你编一程序,给定一树,帮Bob计算出他需要放置最少的士兵.
输入输出格式
输入格式:

第一行 N,表示树中结点的数目。

第二行至第N+1行,每行描述每个结点信息,依次为:该结点标号i,k(后面有k条边与结点I相连)。

接下来k个数,分别是每条边的另一个结点标号r1,r2,…,rk。

对于一个n(0<n<=1500)个结点的树,结点标号在0到n-1之间,在输入数据中每条边只出现一次。

输出格式:

输出文件仅包含一个数,为所求的最少的士兵数目。
dp方程:
状态:f[i][0]表示该点不放,f[i][1]表示该点要放
f[u][0]+=f[to][1];
f[u][1]+=min(f[to][1],f[to][0]);

#include<bits/stdc++.h>
using namespace std;
const int maxn=1500+5,maxm=3000+5;
int f[maxn][2];
int head[maxn];
int n;
struct edge
{
    int to,next;
}e[maxm];
int size=0;
void addedge(int u,int v)
{
    e[++size].to=v;
    e[size].next=head[u];
    head[u]=size;
}
inline int read()
{
    int x=0,f=1;char ch=getchar();
    while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
    while(ch>='0'&&ch<='9'){x=(x<<3)+(x<<1)+ch-'0';ch=getchar();}
    return x*f;
}
void dp(int u,int fa)
{
    f[u][0]=0;f[u][1]=1;
    for(int i=head[u];i;i=e[i].next)
    {
        int to=e[i].to;
        if(to==fa)continue;
        dp(to,u);
        f[u][0]+=f[to][1];
        f[u][1]+=min(f[to][1],f[to][0]);
    }
}
int main()
{
    n=read();
    for(int i=1;i<=n;i++)
    {
        int a=read(),k=read();
        for(int j=1;j<=k;j++)
        {
            int b=read();
            addedge(a,b);
            addedge(b,a);
        }
        dp(0,-1);
    }
    printf("%d\n",min(f[0][0],f[0][1]));
    return 0;
}

Longest path in a tree(求树的直径)
题目描述
给你一个无权无向的树。编写程序以输出该树中最长路径(从一个节点到另一个节点)的长度。在这种情况下,路径的长度是我们从开始到目的地的遍历边数。

输入输出格式 输入格式:
输入文件的第一行包含一个整数N —树中的节点数(0 < N <= 10000)。接下来N -1行包含该树的N -1个边—每行包含一对(u,v),表示在节点u和节点v之间存在边(1 <= u,v <= N)。

输出格式:
一行:输出最长路径的长度。
dp方程
状态设计: f[u][1]表示到最长路,f[u][2]表示次长路;

#include<bits/stdc++.h>
using namespace std;
const int maxn=10000+5,maxm=20000+5;
int f[maxn][2];
int head[maxn];
int size=0,n,ans=0;
struct edge
{
    int to,next;
}e[maxm];
void addedge(int u,int v)
{
    e[++size].to=v;
    e[size].next=head[u];
    head[u]=size;
}
inline int read()
{
    int x=0,f=1;char ch=getchar();
    while(ch>'9'||ch<'0'){if(f=='-')f=-1;ch=getchar();}
    while(ch>='0'&&ch<='9'){x=(x<<3)+(x<<1)+ch-'0';ch=getchar();}
    return x*f;
}
void dp(int u,int fa)
{
    f[u][0]=0;f[u][1]=0;
    for(int i=head[u];i;i=e[i].next)
    {
        int to=e[i].to;
        if(to==fa)continue;
        dp(to,u);
        int dis=f[to][0]+1;
        if(f[u][0]<dis)
        {
            f[u][1]=f[u][0];
            f[u][0]=dis;
        }
        else if(f[u][1]<dis)
        f[u][1]=dis;
    }
    ans=max(ans,f[u][0]+f[u][1]);
}
int main()
{
    n=read();
    for(int i=1;i<n;i++)
    {
        int a=read(),b=read();
        addedge(a,b);
        addedge(b,a);
    }
    dp(1,0);
    printf("%d",ans);
    exit(0);
}

二叉苹果树
题目描述

有一棵苹果树,如果树枝有分叉,一定是分2叉(就是说没有只有1个儿子的结点)

这棵树共有N个结点(叶子点或者树枝分叉点),编号为1-N,树根编号一定是1。

我们用一根树枝两端连接的结点的编号来描述一根树枝的位置。下面是一颗有4个树枝的树

2 5
\ /
3 4
\ /
1

现在这颗树枝条太多了,需要剪枝。但是一些树枝上长有苹果。

给定需要保留的树枝数量,求出最多能留住多少苹果。
输入输出格式
输入格式:

第1行2个数,N和Q(1<=Q<= N,1<N<=100)。

N表示树的结点数,Q表示要保留的树枝数量。接下来N-1行描述树枝的信息。

每行3个整数,前两个是它连接的结点的编号。第3个数是这根树枝上苹果的数量。

每根树枝上的苹果不超过30000个。

输出格式:

一个数,最多能留住的苹果的数量。
dp方程:
状态f[i][k]经过i号节点保留k节点

#include<bits/stdc++.h>
using namespace std;
const int maxn=100+50;
int t[maxn];//存边数 
struct edge
{
    int to,next,val;
}e[maxn<<1];
int n,q,size=0;
int head[maxn],f[maxn][maxn];//经过i号节点保留k节点 
inline int read()
{
    int x=0,f=1;char ch=getchar();
    while(ch>'9'||ch<'0'){if(ch=='-')f=-1;ch=getchar();}
    while(ch<='9'&&ch>='0'){x=(x<<3)+(x<<1)+ch-'0';ch=getchar();}
    return x*f;
}
void addedge(int u,int v,int w)
{
    e[++size].to=v;
    e[size].val=w;
    e[size].next=head[u];
    head[u]=size;
}
void dfs(int u,int fa)
{
    for(int i=head[u];i;i=e[i].next)
    {
        int to=e[i].to;
        if(to==fa)continue;
        dfs(to,u);
        t[u]+=t[to]+1; 
        for(int j=min(t[u],q);j>=1;j--)//当前节点留的边数
        for(int k=min(t[to],j-1);k>=0;k--)//子树的边数
        f[u][j]=max(f[u][j],f[u][j-k-1]+f[to][k]+e[i].val);
    } 
}
int main()
{
    n=read();q=read();
    for(int i=1;i<=n-1;i++)
    {
        int u=read(),v=read(),w=read();
        addedge(u,v,w);
        addedge(v,u,w);
    }
    dfs(1,0);
    printf("%d",f[1][q]);
    return 0;
}
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值