DAY1
铺设道路
题目描述
春春是一名道路工程师,负责铺设一条长度为 n的道路。
铺设道路的主要工作是填平下陷的地表。整段道路可以看作是 n块首尾相连的区域,一开始,第 i块区域下陷的深度为di 。
春春每天可以选择一段连续区间[L,R],填充这段区间中的每块区域,让其下陷深度减少 1。在选择区间时,需要保证,区间内的每块区域在填充前下陷深度均不为 0 。
春春希望你能帮他设计一种方案,可以在最短的时间内将整段道路的下陷深度都变为 00 。
输入输出格式
输入格式:
输入文件包含两行,第一行包含一个整数 n,表示道路的长度。 第二行包含 nn 个整数,相邻两数间用一个空格隔开,第i 个整数为 di 。
输出格式:
输出文件仅包含一个整数,即最少需要多少天才能完成任务。
输入输出样例
输入样例#1:
6 4 3 2 5 3 5
输出样例#1:
9
说明
【样例解释】
一种可行的最佳方案是,依次选择: [1,6]、[1,6]、[1,2]、[1,1]、[4,6]、[4,4]、[4,4]、[6,6]、[6,6]。
【数据规模与约定】
对于 30% 的数据,1 ≤ n ≤ 10;
对于 70% 的数据,1 ≤ n ≤ 1000;
对于 100% 的数据,1≤n≤100000,0≤di≤10000 。
显然贪心 每次区间越长越好
枚举深度 用并查集和数组 维护连通性 记录一共被断为几个区间
#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
const int N=100000+50;
int n,a[N],cnt=1,vis[N],maxd; long long ans=0;
int num,last[N],nxt[N],pos[N];
inline void add(int x,int y) {nxt[++num]=last[x]; last[x]=num; pos[num]=y;}
inline void hehe(int x)
{vis[x]=1;
if(x==1) {if(vis[x+1]==1) {cnt--; return;}
else return;
}
if(x==n) {if(vis[x-1]==1) {cnt--; return;}
else return;
}
if(vis[x-1]==0 && vis[x+1]==0) {cnt++; return;}
if(vis[x-1]+vis[x+1]==1) {return;}
if(vis[x-1]==1 && vis[x+1]==1) {cnt--; return;}
}
int main()
{/*
freopen("road.in","r",stdin);
freopen("road.out","w",stdout);*/
scanf("%d",&n);
for(int i=0;i<=N-20;i++) last[i]=-1;
for(int i=1;i<=n;i++) {scanf("%d",&a[i]); add(a[i],i); maxd=max(maxd,a[i]); }
if(n==1) {printf("%d",a[1]); return 0;}
for(int i=last[0];i!=-1;i=nxt[i])
{int x=pos[i];
hehe(x);
}
for(int k=1;k<=maxd;k++)
{ans=1ll*(ans+cnt);
for(int i=last[k];i!=-1;i=nxt[i])
{hehe(pos[i]);
}
}
printf("%lld\n",ans);
return 0;
}