RNN的bp

本文介绍了RNN的反向传播(bp)过程,重点阐述了RNN如何通过权重将信息传递给下一层及自身输入,并对比了LSTM和GRU在记忆控制上的差异,如LSTM的f,i,o门和GRU的更新门、重置门。" 131028189,18870397,Python反向排序与延迟绑定:高阶函数揭秘,"['Python编程', '算法', '数据处理', '函数', '编程技巧']
摘要由CSDN通过智能技术生成

RNN的bp

来源:https://zybuluo.com/hanbingtao/note/581764

RNN的权重向下层输出的同时,会将权重返回到本层的输入处,和下一次的输入加和
RNN结构

RNN只用了一个权重保存节点的状态,LSTM用了两个权重来保存,新加的状态称为单元状态(cell stat)
C和H两个状态

对长程记忆和短程记忆的控制,可以参考LSTM单元来了解:
LSTM结构

LSTM用三个门来控制数据的流动:f,i,o,其中forget门控制 Ct1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值