神经网络实现鸢尾花分类tensorflow2.0 python3.7 以及所遇到的问题

在TensorFlow2.0和Python3.7环境下,使用神经网络进行鸢尾花数据集分类时,遇到数据类型不匹配问题。通过tf.cast将x_train转为tf.float32,解决矩阵运算问题;将y_train转为tf.int32,解决one_hot编码问题。
摘要由CSDN通过智能技术生成

**

tensorflow2.0 python3.7 环境下利用神经网络实现鸢尾花分裂

数据集处理

iris = load_iris()

x_data = iris.get('data')#返回iris数据集所有特征
y_data = iris.get('target')#返回iris数据集的所有标签


#数据集乱序
np.random.seed(116) #使用相同的seed,是输入特征/标签一一对应
np.random.shuffle(x_data)
np.random.seed(116)
np.random.shuffle(y_data)
tf.random.set_seed(116)
x_data = tf.cast(x_data,dtype=tf.float32)
y_data = tf.cast(y_data,dtype=tf.int32)


#数据集分出永不相见的训练集和测试集
x_train = x_data[:-30]
y_train = y_data[:-30]
x_test = x_data[-30:]
y_test = y_data[-30:]

#配成[输入特征,标签]对,每次喂入一小撮(batch)
train_db = tf.data
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值