电子科技大学 格拉斯哥学院 2017级 胡心莹
图像处理及其应用——商品识别与人脸识别
什么是图像处理?
图像处理,是用计算机对图像进行分析,以达到所需结果的技术,一般包括图像压缩,增强和复原,匹配、描述和识别3个部分。这里主要指数字图像处理,即将图片转化为数字形式,并对其进行处理。在计算机中,图像被储存在一个个0-255数字组成的三维数组中。通过对图像的一系列加工和分析,我们可以达到很多目的,比如对图像的压缩,编码,以方便传输和储存;对图像特征的分析和提取,作为识别的预处理,如灰度处理,均衡处理,降噪处理等等。
什么是图像识别和人脸识别?
图像识别,是计算机对获取图像进行分析,特征采集和分析的技术,而人脸识别,则在图像识别基础上,以面部特征为参考标准,进一步进行生物识别。两者的过程主要包括:图像的采集,图像的预处理,图像特征的采集,以及特征信息与数据库的比对和匹配。如今,图像识别是人工智能的一个重要领域,在地理,生物,军事机器人等领域有重要价值;人脸识别技术拥有广阔的应用前景,高度个人化的特征和难以伪装欺骗的特点使其在安全管理,身份认证,司法公安,电子商务等各个方面颇有潜力。
图像处理在人脸识别中的应用
图像处理是人脸识别系统的重要部分。对于获取到的图像,首先应进行预处理:1)进行补光,以减小光强对面部特征的影响;2)灰度处理,将图像的颜色去掉,仅以二维数组展示,此步对图像的后续处理有很好的铺垫;3)均衡处理,使图像的灰度分部更加均匀,清晰细节,增大反差,增强对比,使特征明显;4)降噪处理,将一些由于传输不完美等因素产生的图像污染过滤,减小背景和目标不必要的噪点,以突出目标的形状,大小等特征。接下来,对处理过的图像使用人脸识别算法和人脸检测算法,提取特征值,并进行识别和比对。
生活实例:商品识别和刷脸支付——快速支付通道的尝试
超市里,排长队结账的现象常有发生。造成结账速度缓慢的一个重要因素是售货员的冗长操作:扫描商品条形码,计价,输入会员账号,结账。目前,扫描二维码的移动支付方式已为我们减少交易时间,但低效的商品扫描和账号输入仍是阻碍快速结账的两大难题。因此,如果能运用图像识别的技术,交易效率将大大提高。设想如下:
首先,顾客将购买商品放置在制定区域,摄像机获取商品图像,计算机通过图像分析,识别顾客购买的商品名称和数量,并自动计价。
其次,用摄像头采集顾客样貌,并与超市会员数据库进行比对,调出对应身份信息,进行核实和确认。
最后,顾客确定信息和金额,通过信息绑定的移动支付方式进行支付。
相信引入图像识别和人脸识别技术,能够减少结账过程的人员参与,使交易过程更加高效,智能,减少由于人为因素的失误,如条形码无法录入,会员号输入错误等,加快交易过程,缩短排队结账的时间,提高超市的运转效率,并为顾客提供更加便利的购物环境和舒适的购物体验。
参考内容:
https://blog.csdn.net/duanchuanttao/article/details/80663734