决策树算法的原理(接地气版)

决策树算法入门:原理与实例解析

点击上方“小白学视觉”,选择加"星标"或“置顶

重磅干货,第一时间送达

决策树()是一类很常见很经典的机器学习算法,既可以作为分类算法也可以作为回归算法。同时也适合许多集成算法,如, ,以后会逐一介绍。本篇介绍一下决策树算法的原理。❞

决策树算法不像前面介绍的SVM那样,散发着浓厚的数学气味。这个算法还是比较接地气的。

信息论基础

2486e97fafa609a456ab19947cfde436.png 这个语法结构大家应该不陌生。怎样准确地定量选择 后面的条件,也就是要找到一个性能指标来衡量这个条件的好坏。(就像SVM中引入了来衡量一条直线的好坏)。

70年代,一个名为昆兰的大牛找到了信息论中的「熵」来度量决策树的决策选择过程。注意,信息论中的熵是香农提出的。昆兰只是将熵应用于决策树的人。

熵度量了事物的不确定性(可以联想化学里的熵,混乱程度),越不确定的事物,它的熵就越大。具体的,随机变量X的熵的表达式如下:

决策树构造

决策树的组成:

  • 根节点:第一个选择点

  • 非叶子节点与分支:中间过程

  • 叶子节点:最终的决策结果b7c2ddecf7bc1bc5eae2a7e526345058.png就像这张图展示的,第一个节点就是根节点,绿色的代表 也就是叶子节点,其它的节点也就是非叶子节点(用于决策),也就是 。

那么如何构造决策树呢?

「第一步,选择根节点」


问题来了,特征不唯一,选哪一个作根节点最优?

这就涉及到了衡量标准,一般而言,随着划分过程不断进行,我们希望节点的熵能够迅速地降低。因为随机变量的熵越大,随机变量的不确定性越大,代表纯度越低。所以希望节点的熵能够迅速降低,使得纯度不断增加。所以以「信息增益」作为衡量标准。

引入一个信息增益( )的概念。

「定义」:特征 对训练数据集 的信息增益 ,定义为集合 的经验熵 与特征 给定条件下 的经验条件熵 之差,即

信息增益也就度量了熵降低的程度。
以信息增益作为衡量标准的算法被称为ID3算法。

「第二步,选择子节点」


依然是采用信息增益的标准进行选择。

「第三步,何时停止」


其实这一步就涉及到剪枝,下文详解。

如果对这些概念还是有点模糊,可以结合下面的实例再思考思考。

实例

92059cea278302fdd9504d286ad40f8c.png这是数据(14天的打球情况),有四种环境特征(,,,),最后一列()代表最后有没有出去打球。

「首先,选择根节点」。一共有四个特征,所以根节点的选择有四种。a55f699978fbffbbad394d06709da7de.png

在我们的原始数据(14天)有9天打球,5天不大,所以此时的熵为:

402 Payment Required

接着,四个特征逐一分析,先从(天气)下手:1993fac1a068aee8b89b20fc325130c0.png当 时,

402 Payment Required


当 时,
当 时,

根据数据, 取 ,,的概率分别为,
熵值计算(几个特征属性熵的加权求和):

402 Payment Required

信息增益:

402 Payment Required

同样的方式计算其它三个特征的信息增益:

四个特征中, 的增益最大,所以选择作为根节点。
「接下来的子节点选择同上」

「何时停止?」
上文也说了,"何时停止"涉及到剪枝。为什么要剪枝?
决策树存在较大的过拟合风险,理论上,决策树可以将样本数据完全分开,但是这样就带来了非常大的过拟合风险,使得模型的泛化能力极差。0c6f3305a8c44c68fcca15afe8b6d104.png剪枝和日常树木的修建是一个道理。这里介绍最常用的「预剪枝」,在构造决策树的过程中,提前停止。
具体的预剪枝策略有:

  • 限制深度,例如,只构造到两层就停止。

  • 限制叶子节点个数,例如,叶子节点个数超过某个阈值就停止
    等等

 

简单介绍一下集成学习( )。有两种类型,

  • Bagging :训练多个分类器,最后可采取投票机制选择最终结果。这里的分类器常常是决策树。代表算法是

  • Boosting:仍是训练多个分类器,将最后的结果加权求和,代表算法是,

这些算法在一些比赛中都是很常见的。

好消息!

小白学视觉知识星球

开始面向外开放啦👇👇👇

50e4de619be8de96f8f444f0644ba73d.png

下载1:OpenCV-Contrib扩展模块中文版教程

在「小白学视觉」公众号后台回复:扩展模块中文教程,即可下载全网第一份OpenCV扩展模块教程中文版,涵盖扩展模块安装、SFM算法、立体视觉、目标跟踪、生物视觉、超分辨率处理等二十多章内容。


下载2:Python视觉实战项目52讲
在「小白学视觉」公众号后台回复:Python视觉实战项目,即可下载包括图像分割、口罩检测、车道线检测、车辆计数、添加眼线、车牌识别、字符识别、情绪检测、文本内容提取、面部识别等31个视觉实战项目,助力快速学校计算机视觉。


下载3:OpenCV实战项目20讲
在「小白学视觉」公众号后台回复:OpenCV实战项目20讲,即可下载含有20个基于OpenCV实现20个实战项目,实现OpenCV学习进阶。


交流群

欢迎加入公众号读者群一起和同行交流,目前有SLAM、三维视觉、传感器、自动驾驶、计算摄影、检测、分割、识别、医学影像、GAN、算法竞赛等微信群(以后会逐渐细分),请扫描下面微信号加群,备注:”昵称+学校/公司+研究方向“,例如:”张三 + 上海交大 + 视觉SLAM“。请按照格式备注,否则不予通过。添加成功后会根据研究方向邀请进入相关微信群。请勿在群内发送广告,否则会请出群,谢谢理解~
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值