点击上方“小白学视觉”,选择加"星标"或“置顶”
重磅干货,第一时间送达
在食品制造工厂,系统需要从传送器中剔除带有错误打印数据代码的包装食品。虽然以前的系统运行还算正常,但它已经陈旧,原始软件开发的升级换代也无法得到支持。该制造商正字寻求对原来的系统进行全面的更新,以满足新的质量标准和食品行业安全标准,并改善整体OCR流程。设计团队从前端工程方法开始,该方法涉及从多个库存单元(SKU)、打印机和打印格式收集数万张正在处理的在线图像,用于测试。
EPIC的工程总监Dan Nadolny表示:“我们在前端投入了更多的时间,以确保最终的交钥匙视觉系统不会像许多视觉系统那样需要后期经常调整。
一台Teledyne DALSA Genie Nano M1940 GigE视觉单色相机拍摄食品包装上的OCR代码图像。图片由Epic Systems提供
为了在全球拥有50多家制造工厂的公司安装OCR系统,EPIC在Matrox Imaging的Matrox Imaging Library(MIL)软件中使用了SureDotOCR工具。专为阅读点阵文本而设计。在Matrox Imaging的支持下,EPIC使用这些图像集优化算法参数,并为必要的处理和成像硬件建立基线。测试结果包括多台打印机和大量的打印变化(例如对比度,宽高比,线位置,字符间距和曲线)。
相机方面,EPIC选择了Teledyne DALSAM1940单色相机,该相机配备索尼的2.4万像素IMX174 CMOS传感器。该摄像机设置为提供5像素点直径和Matrox Indio I / O和通信PCIe板,提供支持以太网供电(PoE)和16个实时离散数字I / O的GigE端口。
机器视觉系统使用标准和工业pc,带有摄像头和圆顶“阴天”照明,在产品表面对比度上提供统一的照明。其目标是实现99.97%的读取率,即小于300parts /million的失败率。
EPIC项目负责人克里斯•沃克(Chris Walker)表示:“SureDotOCR算法的读取率达到了99.90%,一个点直径设置和99.99%的读取率分别通过三次不同点直径设置的读取尝试实现。”“点直径”定义为点矩阵打印文本字符串中单个点的平均像素直径。
他继续说道:“Matrox推荐一个7像素的点直径,但是设计团队为了减少图像存储和带宽的需求,最终选择了一个5像素的点直径。”
沃克说,一次阅读尝试的典型检查时间大约是40毫秒,包括两行文本和大约36个字符。
他说:“我们创建并测试了与标准英文字母数字字体性能类似的外国字体文件。”该算法能够在两行总共36个字符的文本上每分钟超过1200次检查。在单次读取尝试中,读取率高达2500次/分钟。mil支持的多线程和多核处理帮助实现了所需的读取速率。
OCR视觉系统由Epic Systems公司设计开发,用于检测食品包装上的字母数字代码。图片由Epic Systems提供。
检验率为1200份/分钟,连续检验时间仅为50毫秒/份。单次读取尝试的平均检查时间仅为40 ms时的此值。建议进行三次读取尝试/检查以提高系统稳健性。检测时间周期性超过100毫秒,在早期测试期间甚至高达286毫秒。视觉系统必须依靠多线程架构特性 – MIL SDK支持的关键特性 – 来克服这些时间。多线程是并行处理的同义词,是计算机可以同时执行多个进程的功能。
机器视觉系统 – 通过MIL-还可以接收和缓冲图像以便在队列中处理,并且具有多个线程并行处理这些图像。虽然多线程架构在满足高处理速率方面表现良好,但这需要视觉系统跟踪被检查的部件,以便在可能更长的检查时间内正确地拒绝故障部件。
例如,如果零件在传送带上行进并且机器视觉系统开始备份并处理大量图像,或者如果读取需要相当长的时间来处理,则等待检查结果的零件将显着在检查完成并且通过/失败结果准备就绪时,沿着传送带进一步。对于这种应用,如果单次读取花费500毫秒来处理零件,则沿着传送带将进一步增加近1米。
由视觉系统捕获的单色图像的样本,其显示在快餐食品包装的顶部印刷的代码。图片由Epic Systems提供。
为现有的线路输送机提供编码器反馈,跟踪从检查点到1.5米外的喷射器的部件距离,克服了这一挑战,允许视觉系统偶尔出现显着长的读取时间问题,同时保证检查结果将在部件到达喷射器之前进行通信。
Walker表示,最终,光学字符识别解决方案具有足够的灵活性和强大性,可满足应用需求。
好消息!
小白学视觉知识星球
开始面向外开放啦👇👇👇
下载1:OpenCV-Contrib扩展模块中文版教程
在「小白学视觉」公众号后台回复:扩展模块中文教程,即可下载全网第一份OpenCV扩展模块教程中文版,涵盖扩展模块安装、SFM算法、立体视觉、目标跟踪、生物视觉、超分辨率处理等二十多章内容。
下载2:Python视觉实战项目52讲
在「小白学视觉」公众号后台回复:Python视觉实战项目,即可下载包括图像分割、口罩检测、车道线检测、车辆计数、添加眼线、车牌识别、字符识别、情绪检测、文本内容提取、面部识别等31个视觉实战项目,助力快速学校计算机视觉。
下载3:OpenCV实战项目20讲
在「小白学视觉」公众号后台回复:OpenCV实战项目20讲,即可下载含有20个基于OpenCV实现20个实战项目,实现OpenCV学习进阶。
交流群
欢迎加入公众号读者群一起和同行交流,目前有SLAM、三维视觉、传感器、自动驾驶、计算摄影、检测、分割、识别、医学影像、GAN、算法竞赛等微信群(以后会逐渐细分),请扫描下面微信号加群,备注:”昵称+学校/公司+研究方向“,例如:”张三 + 上海交大 + 视觉SLAM“。请按照格式备注,否则不予通过。添加成功后会根据研究方向邀请进入相关微信群。请勿在群内发送广告,否则会请出群,谢谢理解~