MICCAI‘23 | 基于条件扩散模型的弱监督医学图像分割

论文信息

题目:Conditional Diffusion Models for Weakly Supervised Medical Image Segmentation
基于条件扩散模型的弱监督医学图像分割
作者:Xinrong Hu, Yu-Jen Chen, Tsung-Yi Ho, Yiyu Shi
源码:https://github.com/xhu248/cond

论文创新点

  1. 利用条件扩散模型(CDM)进行弱监督语义分割:作者提出了一种新颖的框架,利用CDM中的类别感知语义信息,仅通过图像级别的标注来获取目标对象的预测掩码。这种方法不同于以往通过外部分类器指导的扩散模型方法,避免了在重建过程中背景噪声的累积。
  2. 通过近似导数定位目标类别:作者的方法通过近似CDM输出相对于输入条件的导数来定
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小白学视觉

您的赞赏是我们坚持下去的动力~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值