ACM MM‘24 | 医学图像分类中类别增量学习的不平衡问题解决方法

论文信息

题目:Addressing Imbalance for Class Incremental Learning in Medical Image Classification
医学图像分类中类别增量学习的不平衡问题解决方法
作者:Xuze Hao, Wenqian Ni, Xuhao Jiang, Weimin Tan, Bo Yan

论文创新点

  1. 提出CIL平衡分类损失函数:论文针对类别不平衡导致的分类器偏向新类和多数类问题,提出CIL平衡分类损失函数。该函数通过基于类别频率调整logit,对稀有类别给予更多关注,还引入缩放因子,进一步平衡新旧类别,有效减少分类器偏差。
  2. 设计分布边际损失函数:为解决类别增量学习中,新旧类别在特征空间易重叠的问题,设计了分布边际损失函数。此函数包含两个损失项,一项推动旧类样本远离新类分布,
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小白学视觉

您的赞赏是我们坚持下去的动力~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值