论文信息
题目:Addressing Imbalance for Class Incremental Learning in Medical Image Classification
医学图像分类中类别增量学习的不平衡问题解决方法
作者:Xuze Hao, Wenqian Ni, Xuhao Jiang, Weimin Tan, Bo Yan
论文创新点
- 提出CIL平衡分类损失函数:论文针对类别不平衡导致的分类器偏向新类和多数类问题,提出CIL平衡分类损失函数。该函数通过基于类别频率调整logit,对稀有类别给予更多关注,还引入缩放因子,进一步平衡新旧类别,有效减少分类器偏差。
- 设计分布边际损失函数:为解决类别增量学习中,新旧类别在特征空间易重叠的问题,设计了分布边际损失函数。此函数包含两个损失项,一项推动旧类样本远离新类分布,