SSPP-DAN: DEEP DOMAIN ADAPTATION NETWORK FOR FACE RECOGNITION WITH SINGLE SAMPLE PER PERSON

论文相关内容

本文中域适应的方法及目的

摘要:在现实世界中,每个人使用一个样本进行人脸识别(SSPP)是一项具有挑战性的任务。如果捕捉画廊图像和探测集的条件完全不同,问题就会加剧。为了从领域适应的角度解决这些问题,我们引入了一个SSPP领域适应网络(SSPP- dan)。在提出的方法中,结合领域对抗性训练和深度体系结构,实现了领域自适应、特征提取和分类。然而,每个类一个训练样本的SSPP特性不足以训练深层体系结构。为了克服这一不足,我们使用3D人脸模型生成具有不同姿态的合成图像。利用真实的SSPP数据集进行的实验评价表明,深域自适应和图像合成相辅相成,提高了图像的精度。使用该方法对基准数据集进行的实验显示了最先进的性能。

本文的SSPP-DAN框架

在这里插入图片描述
本文框架主要分为两部分,1、图像合成 2、域适应网络(属于对称的基于特征的域适应方法)
域适应网络通过由特征分类器F、标签分类器C和域判别器D组成的深度网络来进一步提取源域和目标域数据的共同特征。
在这里插入图片描述
S表示源域数据,T表示目标域数据

F的参数来最小化标签预测损失(学习源域标签的判别性信息)和最大化域预测损失(学习域不变性的特征,即学习源域和目标域共有的特征),C的参数来最小化标签预测损失,D的参数来最小化域预测损失(判别数据来自源域还是目标域)
最后一项的负lambda体现了F和D在损失上的对抗关系,它的大小调整了它们之间的平衡。

总结

相关背景:使用一个人一个样本进行脸部识别是个挑战性的任务,当样本的获得与所要识别样本的获得完全不同时,这个任务更加困难。
问题是什么:使用一人一样本来进行脸部识别。
现有解决方案:恕我无知,对图像方面的知识不太了解。
作者的核心思想、创新点在哪里:提出了SSPP-DAN:联合使用带有域对抗训练的深度架构来执行域适应、特征提取、分类等任务,并使用3D面部模型产生原图像的变体增加了源域训练数据的缺乏。
通过什么样的实验进行验证:在两个数据集上使用了不同的源域和目标域进行训练,识别精度有明显的提升。
对我的启发:做研究时不同领域的知识可以相互借鉴。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值