Multi-label Classification via Feature-aware Implicit Label Space Encoding

论文相关内容

本文中解决带有大量类的多标记问题的方法:

摘要:针对多类多标签分类问题,提出了一种新的标签空间降维方法。它将原始标签空间编码为一个低维的潜在空间,并使用解码过程进行恢复。本文提出了一种新的基于特征感知的LSDR算法隐式标签空间编码。与以往的大多数工作不同,本文提出的FaIE不需要对编码过程做任何假设,而是直接学习一个编码矩阵,即某个隐式编码函数的编码结果和一个线性解码矩阵。为了学习这两个矩阵,FaIE共同最大化了原标签空间从潜在空间的可恢复性,以及潜在空间从特征空间的可预测性,从而使自身具有特征感知能力。此外,还可以指定FaIE来学习显式编码函数,并使用内核技巧进行扩展,以处理特征空间和潜在空间之间的非线性关联。

本文思想及模型:

在这里插入图片描述
由于使用传统的方法解决带有大量类的多标签问题会显著增加计算复杂度,所以就提出了维度约简的方法,其关键是学得原始标签空间到低维隐空间的编码矩阵和低维隐空间到原始标签空间的解码矩阵以及特征空间到低维隐空间的预测能力。所以本文优化目标函数如下:
在这里插入图片描述
前者为原始空间的恢复能力,后者为标签的预测能力。由于D可由C和Y得到闭式解,故目标函数为:
在这里插入图片描述
详细为:
在这里插入图片描述
具体优化过程见原文。

模型扩展

显示编码:在这里插入图片描述

核版本:
在这里插入图片描述
在这里插入图片描述在这里插入图片描述

总结

相关背景:为了解决带有许多类的多标签分类问题,最近提出了标签空间的维度约简方法。
问题是什么:进行多标签分类时所面临带有大量类的挑战。
现有解决方案:CS、PLST和CPLST等方法。
作者的核心思想、创新点在哪里:本文提出了FaIE(特征感知的隐式标签空间编码)方法,它用隐式函数编码结果并使用了线性解码矩阵,这两个矩阵联合最大化了原空间从低维隐空间的恢复能力和隐空间对特征空间的预测能力。
通过什么样的实验进行验证:在3个数据集上使用了多个对比算法和不同原始标签空间和隐空间标签数量的比例和准确率及F1两个评价指标,证明了本文模型的先进性能。
对我的启发:要察人所不察,注意细节。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值