-
原码
a.规则:最高位为符号位,0为正数,1为负数,剩余位表示数据
b.例:95(原)=0101 1111(原)
-77(原)=11001101(原)
c.特点:区分正负零(缺陷) +0(原):0000 0000
-0(原):1000 0000
原码可能出错 1(原)+(-1)(原)=1000 0010(原)=(-2)D
d.范围:8位机【-127,127】
16位机【-32767,32767】
32位机【-2147483647,2147483647】 -
反码
a.规则:正数 反码=原码
负数 符号位为1,数据位按位取反
b.例:-77(反)=1100 1101(原)=1011 0010(反)
c.特点:区分正负零 +0(反):0000 0000
-0(反):1111 1111
d.作用:用于原码转补码的一种过渡编码
e.范围:同原码 -
补码
a.规则:正数 反码=原码
负数 符号位为1,数据位按位取反,末位加1
b.例:-50(补)=1011 0010(原)=1100 1101(反)=1100 1110(补)
c.特点:不区分正负零 +0(反):0000 0000
-0(反):0000 0000
d.范围:8位机【-128,127】
16位机【-32768,32767】
32位机【-2147483648,2147483647】
结论:计算机中整数(int)使用补码表示 -
移码
a.作用:用于表示浮点数中的阶码
b.格式:x(移)=x(补)进行符号位取反
c.例:50(移)=0011 0010(补)=1011 0010(移)
d.浮点数的结构:M*2^E M:尾数 E:阶码
e.移码又称为偏移量
将浮点数中的阶码进行偏移,以利用识别尾数和阶码。
8位机:偏移量+128(D)
4位机:+8(D)
计算机编码——编码
最新推荐文章于 2021-08-05 11:12:20 发布